(DM 21)

Assignment 1

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Mathematics

TOPOLOGY AND FUNCTIONAL ANALYSIS MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. Let T_1 and T_2 be two topologies on anon-empty set X, and show that $T_1 \cap T_2$ is also a topology on X.
- 2. Show that a subset set of a topological space is dense ⇔ it intersects every nonempty open set.
- 3. Prove that a closed subspace of a complete metric space is compact '⇔ it is totally bounded.
- 4. Prove that any continuous mapping of a compact metric space into a metric space is uniformly continuous.
- 5. State and prove Ascolis theorem.
- 6. Prove that a metric space is compact \Leftrightarrow it is totally bounded and complete.
- 7. Show that any finite T_1 -space is discrete.

Prove that a topological space is a T_1 -space \Leftrightarrow each point is a closed set.

8. State and prove a generalization of Tietze's theorem which relates to functions whose values lie in \mathbb{R}^n .

State and prove Urysohn's lemma.

(DM 21)

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Mathematics

TOPOLOGY AND FUNCTIONAL ANALYSIS MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

1. Define Banach Space and give some examples.

Let N and N' be normed linear space and Ta linear transformation of N into N'. Then show that the following conditions on T are all equivalent to one another :

- (i) T is continuous.
- (ii) T is continuous at the origin, in the sense that $x_n \to 0 \Rightarrow T(x_n) \to 0$.
- (iii) There exist a real number $K \ge 0$ with the property that $||T(x)|| \le K ||x||$ for every $x \in N$.
- (iv) If $S = \{x : ||x|| \le 1\}$ is closed unit space in N, then its image T(S) is bounded set in N'.
- 2. State and prove open mapping theorem.

State and prove closed graph theorem.

- 3. Show that the parallelogram law is not true in $l_1^n (n > 1)$.
- 4. State and prove the Uniform Boundedness Theorem.
- 5. Show that $||TT^*|| = ||T||^2 9a$. State and prove Bessel's inequality.
- 6. State and prove Bessel's inequality.
- 7. If *P* and *Q* are the projections on a closed linear subspaces *M* and *N* of *H*, prove that PQ is a projection if and only if PQ = QP. In this case, show that PQ is the projection on $M \cap N$.
- 8. If T is an operator on H for which $(T_{x,x}) = 0$ for all x, then prove that T = 0.

(DM 22)

Assignment 1

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Mathematics MEASURE AND INTEGRATION

. MAXIMUM MARKS: 30

ANSWER ALL QUESTIONS

- 1. (a) Prove that every subset of a finite set is finite.
 - (b) If areal-valued function f is defined and continuous on a closed and bounded set F of real numbers, then show that it is uniformly continuous on F.
- 2. (a) Prove that the interval (a, ∞) is measurable.
 - (b) Let $\langle E_i \rangle$ be a sequence of measurable sets, then prove that $m(\bigcup E_i) \leq \Sigma mE_i$ and if E_i are pair wise disjoint, then prove that $m(\bigcup E_i) = \sum mE_i$.
- 3. (a) State and prove Lusin's theorem.
 - (b) Let D and E be measurable sets and f a function with domain D∪E, then show that f is measurable if and only if its restrictions to D and E are measurable.
- 4. (a) Let f be bounded function defined on [a,b]. If f is Riemann integrable on [a,b], then show that it is measurable and

$$R\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(x) \, dx$$

- (b) State and prove Momotone Convergence theorem.
- 5. (a) Let *f* be integrable over *E*. Then show that, for given $\epsilon > 0$, there is a simple function φ such that $\int_{E} |f \varphi| < \epsilon$.
 - (b) Show that if $\langle f_n \rangle$ is a sequence that converges to f in measure, then each subsequence $\langle f_{nk} \rangle$ converges to f in measure.

(DM 22)

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Mathematics MEASURE AND INTEGRATION MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

1. (a) If f is continuous on [a,b] and one of its derivatives (say D^+) is everywhere nonnegative on (a,b), then show that f is non-decreasing on [a,b]; i.e $f(x) \le f(y)$ for $x \le y$.

- (b) If f be integrable function on [a,b] and suppose that $F(x) = F(a) + \int_{a}^{x} f(t) dt$, then prove that F'(x) = f(x) for almost all x in [a,b].
- 2. (a) State and prove Holder inequality.
 - (b) Given $f \in L^p$, $1 \le p < \infty$ and $\varepsilon > 0$, then prove that there is a step function φ and continuous function ψ such that $||f - \varphi||_p < \varepsilon$ and $||f - \psi||_p < \varepsilon$.

3. (a) If
$$E_i \in \mathfrak{B}$$
, then prove that $\mu\left(\bigcap_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} \mu E_i$.

- (b) Suppose that to each α in a dense set D of real numbers there is assigned a set $B_{\alpha} \in \mathfrak{B}$ such that $\mu(B_{\alpha} \sim B_{\beta}) = 0$ for $\alpha < \beta$. The prove that there is measurable function f on X such that $f \leq \alpha$ a.e on B_{α} and $f \geq \alpha$ a.e. on $X \sim B_{\alpha}$.
- 4. State and prove Hahn Decomposition theorem.
- 5. State and prove Caratheodory theorem.

(DM 23)

Assignment 1

M.Sc. DEGREE EXAMINATION, DECEMBER 2020.

Second Year

Mathematics

ANALYTICAL NUMBER THEORY AND GRAPH THEORY MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

1. (a) For all
$$x \ge 1$$
, prove that $\sum_{n \le x} \sigma_1(n) = \frac{1}{2}\zeta(2)x^2 + O(x\log x)$ Prove that $\sum_{n \le x} \sigma_\alpha(n) = \frac{\zeta(\alpha+1)}{\alpha+1}x^{\alpha+1} + O(x^{\alpha})$, where $\beta = \max\{1, \alpha\}$

(b) State and prove Euler's summation formula.

2. (a) For all
$$x > 2$$
, Prove that $\sum_{p \le x} \left\lfloor \frac{x}{p} \right\rfloor \log p = x \log x + o(x)$ where the sum is extended over all primes $\le x$.

- (b) State and prove Legendre's identity.
- 3. (a) State and prove Shapiro's Tauberian theorem.

(b) For a
$$x \ge 2$$
, Prove that $v = \pi(x) \log x - \int_{2}^{x} \frac{\pi(t)}{t} dt$ and $\pi(x) = \frac{v(x)}{\log x} + \int_{2}^{x} \frac{v(t)}{t \log^{2} t} dt$

4. (a) Prove that the prime number theorem implies $\frac{\lim_{n \to \infty} M(x)}{n \to \infty} = 0$

- (b) State and prove Selbergs asymptotic formula.
- 5. (a) Prove that, In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint subgraphs such that they together contain all edges of G and that each is a unicursal graph.
 - (b) Prove that, a complete graph with n vertices there are (n 1)/2 edge-disjoint Hamiltonian circuits , if n is an odd number ≥ 3 .

(DM 23)

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Mathematics

ANALYTICAL NUMBER THEORY AND GRAPH THEORY MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. (a) Explain Traveling-Salesman problem.
 - (b) Prove that, an Euler graph G is arbitrary traceable from vertex y in G if and only if every circuit in G contains v.

2. (a) Prove that, In any tree(with two or more vertices) , there are at least two pendent vertices.

(b) Prove that, every connected graph has at least one spanning tree.

3. (a) Prove that, a vertex v in a connected graph G is a cut-vertex if and only if there exist two vertices xx and y in G such that every path between x and y passes through v.

(b) Prove that, the vertex connectivity of any graph G can never exceeds the edge connectivity of G.

4. (a) Prove that, any simple planar graph can be embedded in a plane such that every edge is drawn as a straight line segment.

(b) Prove that , a connected graph with n vertices and e edges has e - n + 2 regions.

5. (a) Prove that ,the set consisting of all the cut-sets and the edge-disjoint union of cut-sets in a graph G is an abelian group under the ring sum operation.

(b) Explain basis vectors of a graph.

(DM 24)

Assignment 1

M.Sc. DEGREE EXAMINATION, DECEMBER 2020.

Second Year

Mathematics

RINGS AND MODULES

MAXIMUM MARKS: 30

ANSWER ALL QUESTIONS

- 1. (a) Show that Boolean algebra becomes a completed distributive lattice by defining $a \lor b = (a' \land b'), 1 = 0'$.
 - (b) Show that in any Boolean ring, we have the identities a+a=0,ab=ba.
- 2. (a) Prove that the endomorphisms of an abelian group form a ring if addition is defined in a natural way.
 - (b) If A, B and C are additive subgroups of R then prove that (AB)C=A(BC). Moreover

 $AB \subset C \Leftrightarrow C:B$

 $\Leftrightarrow B \subset A : C \, .$

- 3. (a) Prove that the central idempotents of a ring R form a Boolean algebra B(R).
 - (b) If *S* is a sub-ring of *R* and *K* is an ideal, show that $(S+K)/K \cong S/(S \cap K)$.
- 4. (a) Let R be commutative ring, prove that the following are equivalent
 - (i) R has unique prime ideal P.
 - (ii) R is local and RadR = radR.
 - (iii) non-units are zero-divisors.
 - (iv) R is primary and all non-units are zero-divisors.
 - (b) Show that the ring of $n \times n$ matrices over a field is a regularring.

- 5. (a) Prove the following statements concerning the commutative ring R are equivalent.
 - (i) Every irreducible fraction has domain R.
 - (ii) For every f there exist an element $s \in R$ such that fd=sd for all $d \in D$, the domain of f.
 - (iii) $Q(R) \cong R$ canonically.
 - (b) Determine all prime and maximal ideals as well as both radicals of Z(n), the ring of integers modulo n.

(DM 24)

M.Sc. DEGREE EXAMINATION, DECEMBER 2020.

Second Year

Mathematics

RINGS AND MODULES MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

1. (a) If A_R is an irreducible module, then its ring of endomorphisms $D=Hom_R(A,A)$ is a division ring.

- (b) Show that a prime ring with a minimal right ideal is (right) primitive.
- 2. (a) Prove that, the radical is the largest ideal K such that, for all $r \in K$.
 - (b) If K and P are ideals such that K⊂P⊂R, show that P/K is prime if and only if P is prime.
- 3. (a) Prove that, a vector space is completely reducible.
 - (b) If R is right Artinian then, prove that $\operatorname{Rad} R = \operatorname{rad} R$.

4. (a) Prove that, every R-module is projective if and only if R is completely reducible.

- (b) Prove that, M is projective if and only if every ephimorphism $\pi: B \to M$ is direct.
- 5. (a) Show that every *R*-module is injective if and only if *R* is completely reducible.
 - (b) Prove that, M is injective if and if only M has no proper essential extension.