DM21

ASSIGNMENT – 1 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020 (Second Year) MATHEMATICS Topology and Functional Analysis MAXIMUM MARKS – 30 ANSWER ALL QUESTIONS

- Q1) a) Show that a subspace of a topological space is itself a topological space.
 - b) Show that a topological space X is metrizable there exist a homeomorphism of X onto a subspace of some metric space Y.
- **Q2)** a) State and prove Tychonoff's Theorem.
 - b) Prove that every sequentially compact metric space is totally bounded.
- **Q3)** a) State and Prove Ascoli's theorem.
 - b) Show that \mathbb{R}^{∞} is not locally compact.
- **Q4)** a) Prove that the product of any non-empty class of Hausdorff space is a Hausdorff space.
 - b) Prove that compact subspace of a Hausdorff space is closed.
- Q5) a) State and prove the Urysohn Imbedding theorem.
 - b) State and prove a generalization of Tietze's theorem which relates to functions whose values lie in Rⁿ

ASSIGNMENT – 2 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020 (Second Year) MATHEMATICS Topology and Functional Analysis MAXIMUM MARKS – 30 ANSWER ALL QUESTIONS

Q1)

- Define Banach Space and give some examples.
- b) Let N be a non-zero normed linear space, and prove that N is a Banach space ⇔ {x: ||x||=1} is complete.
 - a) State and prove the Hahn-Banach Theorem.
 - b) If N is a normed linear space and x₀ is a non-zero vector in N, then there exist a functional f₀ in N* such that f₀(x₀)= ||x₀|| and ||f₀||=1.

Q2)

- **Q3)** a) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
 - b) Define Hilbert Space and give some examples.
- **Q4)** a) State and prove Bessel's inequality.
 - b) Prove that a Hilbert space H is separable if and only if every orthonormal set in H is countable.
- **Q5)** a) If T is an operator on H for which $(T_{x,x}) = 0$ for all x, then prove that T = 0.
 - b) If T is an operator on H, then prove that the following conditions are all equivalent to each other.
 - i) $TT^* = I$.
 - ii) $(T_x, T_y) = (x, y)$ for all x and y.
 - iii) $||\mathbf{T}x|| = |x||$ for all x.

DM21

DM22

ASSIGNMENT – 1 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020 (Second Year) MATHEMATICS Measure and Integration MAXIMUM MARKS – 30 ANSWER ALL QUESTIONS<u>.</u>

- **Q1**) a) The union of a countable collection of countable sets is countable.
 - b) Show that every bounded infinite sequence has a subsequence that converges to a real number.
 - a) Let $\{A_n\}$ be a countable collection of sets of real

numbers, then prove that
$$m^*(\bigcup A_n) \leq \sum m^* A_n$$
.

- b) If f is measurable function and f = g a.e, then prove that g is measurable.
- Q3) a) State and prove Egoroff's theorem.
 - b) State and prove Lusin's theorem.

a) Let φ and Ψ be simple functions which vanish outside a set of finite measure, then prove that $\int (a\varphi + b\Psi) = a \int \varphi + b \int \Psi$.

Q2)

b) State and prove Fatou's Lemma.

Q5)

- a) Show that if f is integrable over E, then so is |f|and $\left|\int f\right| \leq \int |f|$
- b) Let $\langle f_n \rangle$ be asequence of measurable functions that converges in measure to f. Then prove that, there is subsequence $\langle f_m \rangle$ that converges to f almost everywhere.

ASSIGNMENT – 2 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020

(Second Year)

MATHEMATICS

Measure and Integration MAXIMUM MARKS – 30 ANSWER ALL QUESTIONS<u>.</u>

Q1)

 a) Let f be an increasing real-valued function on the interval [a,b]. Then prove that f is differentiable almost everywhere. The derivative

f' is measurable, and $\int_{a}^{b} f'(x) dx \le f(b) - f(a)$.

b) If f is integrable on [a, b], then show that the function F defined by $F(x) = \int_{a}^{x} f(t) dt$ is a continuous function of bounded variation on [a, b].

Q2)

- a) Prove the Minkowski Inequality for $1 \le p < \infty$.
- b) Given $f \in L^p$, $1 \le p < \infty$, and $\varepsilon > 0$, then prove that there is a bounded measurable function f_M with $|f_M| \le M$ and $||f - f_M|| < \varepsilon$.

Q3)

- a) If $\mathbf{E}_i \in \mathfrak{A}$, $\mu E_1 < \infty$ and $\mathbf{E}_i \supset \mathbf{E}_1$, then prove that $\mu \left(\bigcap_{i=1}^{\infty} \mathbf{E}_i \right) = \lim_{n \to \infty} \mu \mathbf{E}_n.$
- b) Suppose that to each α in a dense set D of real numbers there is assigned a set B_α∈ ℜ such that B_α⊂B_β for α < β. The prove that there is unique measurable extended real valued function f on X such that f≤α on B_α and f≥α on X~B_α

Q4) State and prove Hahn Decomposition theorem.

Q5)

The class of \mathfrak{A} of μ^* - measurable sets is a σ -algebra. If $\overline{\mu}$ is μ^* restricted to \mathfrak{A} , then prove that $\overline{\mu}$ is complete measure on \mathfrak{A} .

ASSIGNMENT – 1 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020

(Second Year)

MATHEMATICS

Analytical Number Theory and Graph Theory

MAXIMUM MARKS - 30

ANSWER ALL QUESTIONS

Q1)

a) For all
$$x \ge 1$$
, Prove that $\sum_{n \le x} \sigma_1(n) = \frac{1}{2}\zeta(2)x^2 + O(x \log x)$. Prove that $\sum_{n \le x} \sigma_n(n) = \frac{\zeta(\alpha+1)}{\alpha+1}x^{n+1} + O(x^n)$, where $\beta = \max\{1, \alpha\}$

b) State and prove Euler's summation formula.

Q2)

a) For all $x \ge 1$, prove that $\left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1$ with equality holding only if x < 2.

b) State and prove Legendre's identity.

Q3) a) State and prove Abel's identity.

b) For a
$$x \ge 2$$
, prove that $\nu(x) = \pi(x)\log x - \int_{2}^{x} \frac{\pi(t)}{t} dt$
and $\pi(x) = \frac{\nu(x)}{\log x} + \int_{2}^{x} \frac{\nu(t)}{t\log^{2} t} dt$.

a) Prove that the prime number theorem implies $\lim_{n \to \infty} \frac{M(x)}{x} = 0.$

Q4)

- b) State and prove Selberg's asymptotic formula.
- **Q5)** a) Prove that, a simple with *n* vertices and *k* components can have at most (n k) (n k + 1)/2 edges.
 - b) Prove that, a connected graph G is an Euler graph if and only if it can be decomposed into circuits.

ASSIGNMENT – 2 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020 (Second Year) MATHEMATICS Analytical Number Theory and Graph Theory MAXIMUM MARKS – 30 ANSWER ALL QUESTIONS

- **Q1)** a) Explain Konigsberg Bridge problem.
 - b) Prove that, an Euler graph G is arbitrary traceable from vertex v in G if and only if every circuit in G contains v.
- **Q2)** a) If in a graph G there is one and only one path between every pair of vertices, then G is a tree.
 - b) Prove that the distance between vertices of a connected graph is a metric.
- **Q3)** a) Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge-disjoint union of cut-sets.
 - b) Prove that every cut-set in a connected graph G must contain at least one branch of every spanning tree of G.
- **Q4)** a) Prove that Kuratowski's is second graph is non-planar.
 - b) Prove that, a connected graph with *n* vertices and *e* edges has e n + 2 regions.
- **Q5)** a) Prove that, the ring sum of two circuits in a graph G is either a circuit or an edgedisjoint union of circuits.
 - b) Explain about Modular arithmetic and Galois fields.

DM23

ASSIGNMENT – 1 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020

(Second Year)

MATHEMATICS

Rings and Modules MAXIMUM MARKS – 30 ANSWER ALL QUESTIONS

Q1)

- a) The class of semi-lattices can be equationally defined as the class of all semi-groups (S,∧), then prove that (S,∧) satisfying the commutative and idempotent laws.
- b) Prove that a Boolean algebra (S,0',.) can be turned into a Boolean ring (S,0,1,-,+,.) by defining $1=0',-a = a, a + b = ab' \lor ba'$ where $a \lor b = (a'b')'$.
 - a) Prove that the sum $\sum_{i \in I} B_i$ of submodules of A_R is direct if and only if, for all $i \in I$, $B_i \cap \sum B_j = 0$.

Q2)

- b) Prove that the following statements are equivalent.
 - R is isomorphic to a finite direct of rings R_i(i = 1, 2,..., n)
 - (2) There exist central orthogonal idempotents, $e_i \in \mathbb{R}$ such that $1 = \sum_{i=1}^{n} e_i$ and $e_i \mathbb{R} \cong \mathbb{R}_i$.

(3) R is a finite direct sum of ideals K_i ≅ R_i.

Q3)

a) If B and C are sub-modules of a prove that (B+C)/B ≅ C/(B ∩ C).

- b) Prove that a module is Noetherian if and only if every sub-module is finitely generated.
- (Q4) a) Prove that radical of a commutative ring R consists of all nilpotent elements of.
 - b) Prove the following statements concerning the Boolean ideal K are equivalant.
 - (1) K is maximal
 - (2) K is prime

- (3) For every element s, either s∈K or s' ∈K but not both.
- **Q5)** a) Prove that every equivalent class of factions exactly one irreducible fraction, and this extends all fractions in the class.
 - b) If R is a Boolean ring then prove that Q(R) is a Boolean ring.

ASSIGNMENT – 2 M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2020

(Second Year)

MATHEMATICS

Rings and Modules MAXIMUM MARKS – 30 ANSWER ALL QUESTIONS

- **Q1)** a) Prove that, the ring R is prime if and only if there exist a faithful irreducible module A_{R} .
 - b) Show that a dense sub-ring of the ring of linear transformations of a vector space is primitive.
- (Q2) a) Show that, the prime radical of R is the set of all strongly nilpotent elements.
 - b) Prove that, the radical of R is the set of all rR such that 1-rs is right invertible for all s∈R.
- Q3) a) Prove the following conditions concerning the module A are equivalent.
 - (1) A is completely reducible
 - (2) A has no proper large sub-module.
 - (3) L(A) is complemented.

b) If e² = e ∈ R and f² = f ∈ R, then eR ≅ f R if and only if there exist u,v ∈ R such that vu = e and uv = f.

- **Q4)** a) Prove that every free module is projective.
 - b) Prove that, M is projective if and only if every ephimorphism π: B→M is direct.
- Q5)
- a) If M is the direct product of a family of modules {M_i/i∈I}, then prove that, M is injective if and only if each M_i is injective.
- b) Prove that, M is injective if and only if M has no proper essential extension.

DM24