(DM01)

Total No. of Questions : 10] [Total No. of Pages : 02 M.Sc. (Previous) DEGREE EXAMINATION, DEC. – 2016 First Year MATHEMATICS Algebra

Time : 3 Hours

Maximum Marks: 70

<u>Answer any Five questions</u> <u>All questions carry equal marks.</u>

- **Q1)** a) If G is an abelian group of order o(G) and p is a prime number such that $p^{\alpha} / o(G)$, $p^{\alpha+1} / o(G)$ then prove that G has a subgroup of order p^{α} .
 - b) State and prove the Cayley's theorem.
- Q2) a) Define an automorphism of a group. If G is a group, then prove that A(G), the set of automorphism of G, is also a group.
 - b) State and prove the Cauchy's theorem for abelian groups.
- **Q3)** a) Define the Kernel of a group homomorphism. If ϕ is a homomorphism of G onto \overline{G} with Kernel K, then show that K is a normal subgroup of G.
 - b) Prove that every permutation can be uniquely expressed as a product of disjoint cycles.

Express $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8 \end{pmatrix}$ as the product of disjoint cycles.

- **Q4)** a) State and prove the unique factorization theorem.
 - b) Show that every integral domain is a field.
- **Q5)** a) State and prove the Einestein's criterion.
 - b) If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R/M is a field.
- Q6) a) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.

- b) Prove that the number *e* is transcendental.
- **Q7)** a) Prove that the polynomial $f(x) \in F[x]$ has a multiple root if and only if f(x) and f'(x) have a non trivial common factor.
 - b) If L is a finite extension of K and K is a finite extension of F, then prove that L is a finite extension of F. Moreover [L: F] = [L: K] [K: F].
- **Q8)** State and prove the fundamental theorem of Galois theory.
- **Q9)** a) Define a modular lattice. Prove that every distributive lattice is modular but not conversely.
 - b) Prove that every distributive lattice with more than one element can be represented as a subdirect union of two element chains.
- **Q10)** a) State and prove the Schreier's theorem.
 - b) Define a Boolean algebra. If B is a Boolean algebra and $a, b \in B$, then show that i) (a')' = a
 - ii) $(a \wedge b)' = a' \vee b'$
 - iii) $a = b \Leftrightarrow (a \land b') \lor (a' \land b) = b.$

(DM02)

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. (Previous) DEGREE EXAMINATION, DEC. – 2016 First Year MATHEMATICS

Analysis

Time : 3 Hours

Maximum Marks : 70

<u>Answer any Five questions</u> <u>All questions carry equal marks.</u>

- **Q1)** a) Let Y be a subset of the metric space X. Prove that a subset E of Y is open relative to Y, if and only if $E = Y \cap G$ for some open set G of X.
 - b) Define a compact set. Prove that compact subsets of metric spaces are closed.
- **Q2)** a) If P is a non empty perfect set in \mathbb{R}^{K} , then prove that P is uncountable.
 - b) Prove that every K-cell is compact.
- **Q3)** a) Prove that (i) Every convergent sequence in any metric space is a Cauchy's sequence and (ii) Every Cauchy sequence in \mathbb{R}^{K} converges.
 - b) Show that the Cauchy product of two absolutely convergent series converges absolutely.
- Q4) a) State and prove a necessary and sufficient condition for a mapping f of a metric space X into a metric Y to be continuous on X.
 - b) If f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X, then show that f(E) is connected.
- **Q5)** a) If f is continuous on [a, b], then prove that $f \in \mathbb{R}(\alpha)$ on [a, b].
 - b) State and prove the fundamental theorem of integral calculus.
- *Q6*) a) Let α increase monotonically and $\alpha' \in \mathbb{R}$ on [a, b]. If f be a bounded real function on [a, b] then prove that $f \in \mathbb{R}(\alpha)$ if and only if $f \alpha' \in \mathbb{R}$.
 - b) Suppose $f \in \mathbb{R}(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b]. Then prove that $h \in \mathbb{R}(\alpha)$ on [a, b].

- Q7) a) State and prove the Cauchy's criterion for uniform convergence of a sequence of functions defined on a set E.
 - b) Suppose K is compact and (i) $\{f_n\}$ is a sequence of continuous functions on K (ii) $\{f_n\}$ converges pointwise to a continuous function f on K and (iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K, n = 1, 2, 3, ...$ Then show that $f_n \to f$ uniformly on K.
- **Q8)** a) Show that there exists a real continuous function on the real line which is nowhere differentiable.
 - b) If K is a compact metric space, if $f_n \in \mathcal{F}(K)$ for n = 1, 2, 3, ... and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.
- **Q9)** a) State and prove the Lebesgue's monotone convergence theorem.
 - b) Let f and g be measurable real-valued functions defined on X. For a real valued continuous function F on \mathbb{R}^2 , put $h(x) = \mathbb{F}(f(x), g(x)), x \in \mathbb{X}$. Then show that h is measurable and in particular f + g, fg are measurable.
- **Q10)** a) State and prove Lebesgue's dominated convergence theorem.
 - b) State and prove the Riesz-Fischer theorem.

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. (Previous) DEGREE EXAMINATION, DEC. – 2016 First Year

MATHEMATICS

Complex Analysis & Special Functions & Partial Differential Equations

Time : 3 Hours

Maximum Marks : 70

<u>Answer any Five questions.</u> <u>Choosing at least Two from each section.</u> <u>All questions carry equal marks.</u>

<u>SECTION – A</u>

Q1) a) Show that
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
.

- b) Prove that $(1-2xz+z^2)^{-1/2} = \sum_{n=0}^{\infty} z^n P_n(x)$ Deduce the first three Legendre polynomials.
- **Q2)** a) With the usual notation, prove that i) $J_{-n}(x) = (-1)^n J_n(x)$

ii)
$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x)$$

- b) Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n \theta x \sin \theta) d\theta$, *n* being on integer.
- **Q3)** a) State and prove the necessary and sufficient condition for the integrability of the equation P dx + Q dy + R dz = 0
 - b) Solve the equation $z^{2}dx + (z^{2} - 2yz)dy + (2y^{2} - yz - zx)dz = 0$

Q4) a) Solve
$$(D^2 - D^1)z = 2y - x^2$$

b) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \cos mx \cdot \cos ny$

- **Q5)** a) Solve $r t \cos^2 x + p \tan x = 0$ by Monge's method.
 - b) Find a surface passing through two lines x = z = 0, z 1 = x y = 0 satisfying r + 4s + 4t = 0.

SECTION - B

- **Q6)** a) For a given power series $\sum_{n=0}^{\infty} a_n (z-a)^n$ define $0 \le R < \infty$ by $\frac{1}{R} = \text{Limsup} |a_n|^{\frac{1}{n}}$. Then prove that (i) if |z-a| < R, then the series converges absolutely (ii) if |z-a| > R, the series diverges (iii) if 0 < r < R, then the series converges uniformly on $\{z \mid z \le r\}$.
 - b) Distinguish between differentiability and analycity of a function. Show that $f(z) = \overline{z}$ is not analytic.
- Q7) a) State and prove the Cauchy's theorem.
 - b) Discuss the mapping properties of cosz and sinz.
- **Q8)** a) Find an analytic function $f: G \rightarrow c$ where $G = \{z \mid \text{Re } z > 0\}$ such that $f(G) = D = \{z : |z| < 1\}$.
 - b) State and prove the open mapping theorem.
- *Q9*) a) State and prove the Morera's theorem.
 - b) Evaluate $\int_{r} \frac{2z+1}{z^2+z+1} dz$ where *r* is the circle |z| = 2
- **Q10)** a) Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} dx$ using the theory of residues.
 - b) State the residue theorem. Using this theorem evaluate $\int_0^{\pi} \frac{d\theta}{3 + 2\cos\theta}$

* * *

(DM04)

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. (Previous) DEGREE EXAMINATION, DEC. – 2016 First Year MATHEMATICS

Theory of Ordinary Differential Equations

Time : 3 Hours

Maximum Marks : 70

<u>Answer any Five questions</u> <u>All questions carry equal marks</u>

Q1) a) If $\phi_1, \phi_2, \dots, \phi_n$ are *n* solutions of L(y) = 0 on an internal I, prove that they are linearly independent there if and only if $W(\phi_1, \phi_2, \dots, \phi_n)$ $(x) \neq 0 \forall x$ in I.

b) Find the two solutions ϕ_1 , ϕ_2 of the equation $y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0$, x > 0 satisfying $\phi_1(1) = 1$, $\phi_2(1) = 0$, $\phi'_1(1) = 0$, $\phi'_2(1) = 1$.

- (Q2) a) Find two linearly independent power series solutions in powers of x for the equation $y'' + 3x^2y' xy = 0$.
 - b) Obtain the Rodrigue's formula for the Legendre's differential equation.
- **Q3)** a) Let M, N be two real valued functions having continuous first partial derivatives on some rectangle $R : |x - x_0| \le a$, $|y - y_0| = b$. Then show that the equation M(x, y) + N(x, y)y' = 0 is exact in R if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in R.
 - b) Find an integrating factor of the equation $(\cos x)\cos y \, dx 2(\sin x)\sin y \, dy = 0$ and hence solve it.
- **Q4)** a) Consider y' = 3y + 1, y(0) = 2. Show that the successive approximations ϕ_0, ϕ_1, \dots exist for all *x*. Compute the first four approximations ϕ_0, \dots, ϕ_3 to the solution.
 - b) Show that the function f given by $f(x, y) = x^2 |y|$ satisfy a Lipschitz condition on R : $|x| \le 1$, $|y| \le 1$. Show that $\frac{\partial y}{\partial x}$ does not exist at (x, 0) if $x \ne 0$.

Q5) a) Compute a solution for the system $y'_1 = 3y_1 + 4y_2$, $y'_2 = 5y_1 + 6y_2$.

- b) Show that all real valued solutions of the equation $y'' + \sin y = b(x)$ exist for all real x, where b(x) is continuous for $-\infty < x < \infty$.
- Q6) a) State and prove the existence theorem for linear systems and establish the uniqueness.
 - b) Suppose y = (8+i,3i,-2), z = (i,-i,2) and w = (2+i,0,1) be vectors in C₃. Compute *y*-*z*. Verify whether these vectors are associative and commutative.

Q7) a) Find the solution of the Riccati equation $W^1 - W^2 - 1 = 0$.

b) Find a function Z(x) such that
$$Z(x)[y''+3y'+2y] = \frac{d}{dx}[K(x)y'+m(x)y]$$

- **Q8)** a) Compute the Green's function for the equation $y'' 4y' + 3y = x, (-\infty < x < \infty)$. Hence find the general solution.
 - b) Derive an adjoint equation for L(y) = y' Ay = 0 where A is a $n \times n$ matrix. Obtain a condition for the operator L to be self adjoint.
- *Q9*) a) State and prove the Sturm comparison theorem.
 - b) Put the differential equation y'' + f(t)y' + g(t)y = 0 into self-adjoint form.
- *Q10*) a) State and prove the Liapunov's inequality.
 - b) Derive a condition for the equation $P_0u'' + P_1u' + P_2u = 0$ to be self-adjoint.

