M.Sc. (Previous) DEGREE EXAMINATION, DEC. - 2016
 First Year MATHEMATICS

Algebra

Time : 3 Hours
Maximum Marks : 70

Answer anv Five questions
 All questions carry equal marks.

Q1) a) If G is an abelian group of order $\mathrm{o}(\mathrm{G})$ and p is a prime number such that $p^{\alpha} / \mathrm{o}(\mathrm{G}), p^{\alpha+1} / \mathrm{o}(\mathrm{G})$ then prove that G has a subgroup of order p^{α}.
b) State and prove the Cayley's theorem.

Q2) a) Define an automorphism of a group. If G is a group, then prove that $A(G)$, the set of automorphism of G , is also a group.
b) State and prove the Cauchy's theorem for abelian groups.

Q3) a) Define the Kernel of a group homomorphism. If ϕ is a homomorphism of G onto $\overline{\mathrm{G}}$ with Kernel K , then show that K is a normal subgroup of G .
b) Prove that every permutation can be uniquely expressed as a product of disjoint cycles.
Express $\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 4 & 5 & 1 & 6 & 7 & 9 & 8\end{array}\right)$ as the product of disjoint cycles.

Q4) a) State and prove the unique factorization theorem.
b) Show that every integral domain is a field.

Q5) a) State and prove the Einestein's criterion.
b) If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R / M is a field.

Q6) a) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.
b) Prove that the number e is transcendental.

Q7) a) Prove that the polynomial $f(x) \in \mathrm{F}[x]$ has a multiple root if and only if $f(x)$ and $f^{\prime}(x)$ have a non trivial common factor.
b) If L is a finite extension of K and K is a finite extension of F , then prove that L is a finite extension of F . Moreover $[\mathrm{L}: \mathrm{F}]=[\mathrm{L}: \mathrm{K}][\mathrm{K}: \mathrm{F}]$.

Q8) State and prove the fundamental theorem of Galois theory.

Q9) a) Define a modular lattice. Prove that every distributive lattice is modular but not conversely.
b) Prove that every distributive lattice with more than one element can be represented as a subdirect union of two element chains.

Q10) a) State and prove the Schreier's theorem.
b) Define a Boolean algebra. If B is a Boolean algebra and $a, b \in \mathrm{~B}$, then show that i) $\quad\left(a^{\prime}\right)^{\prime}=a$
ii) $\quad(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$
iii) $\quad a=b \Leftrightarrow\left(a \wedge b^{\prime}\right) \vee\left(a^{\prime} \wedge b\right)=b$.

M.Sc. (Previous) DEGREE EXAMINATION, DEC. - 2016
 First Year
 MATHEMATICS

Analysis

Time : 3 Hours
Maximum Marks : 70

Answer anv Five questions
All questions carry equal marks.

Q1) a) Let Y be a subset of the metric space X . Prove that a subset E of Y is open relative to Y, if and only if $E=Y \cap G$ for some open set G of X.
b) Define a compact set. Prove that compact subsets of metric spaces are closed.

Q2) a) If P is a non empty perfect set in R^{K}, then prove that P is uncountable.
b) Prove that every K-cell is compact.

Q3) a) Prove that (i) Every convergent sequence in any metric space is a Cauchy's sequence and (ii) Every Cauchy sequence in R^{K} converges.
b) Show that the Cauchy product of two absolutely convergent series converges absolutely.

Q4) a) State and prove a necessary and sufficient condition for a mapping f of a metric space X into a metric Y to be continuous on X .
b) If f is a continuous mapping of a metric space X into a metric space Y and if E is a connected subset of X , then show that $f(\mathrm{E})$ is connected.

Q5) a) If f is continuous on $[a, b]$, then prove that $f \in \mathrm{R}(\alpha)$ on $[a, b]$.
b) State and prove the fundamental theorem of integral calculus.

Q6) a) Let α increase monotonically and $\alpha^{\prime} \in \mathrm{R}$ on $[a, b]$. If f be a bounded real function on $[a, b]$ then prove that $f \in \mathrm{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathrm{R}$.
b) Suppose $f \in \mathrm{R}(\alpha)$ on $[a, b], m \leq f \leq \mathrm{M}, \phi$ is continuous on [m, M] and $h(x)=\phi(f(x))$ on $[a, b]$. Then prove that $h \in \mathrm{R}(\alpha)$ on $[a, b]$.

Q7) a) State and prove the Cauchy's criterion for uniform convergence of a sequence of functions defined on a set E.
b) Suppose K is compact and (i) $\left\{f_{n}\right\}$ is a sequence of continuous functions on K (ii) $\left\{f_{n}\right\}$ converges pointwise to a continuous function f on K and (iii) $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in \mathrm{~K}, n=1,2,3, \ldots$. Then show that $f_{n} \rightarrow f$ uniformly on K.

Q8) a) Show that there exists a real continuous function on the real line which is nowhere differentiable.
b) If K is a compact metric space, if $f_{n} \in \zeta(\mathrm{~K})$ for $n=1,2,3, \ldots$ and if $\left\{f_{n}\right\}$ converges uniformly on K , then prove that $\left\{f_{n}\right\}$ is equicontinuous on K .

Q9) a) State and prove the Lebesgue's monotone convergence theorem.
b) Let f and g be measurable real-valued functions defined on X . For a real valued continuous function F on R^{2}, put $h(x)=\mathrm{F}(f(x), g(x)), x \in \mathrm{X}$. Then show that h is measurable and in particular $f+g, f g$ are measurable.

Q10) a) State and prove Lebesgue's dominated convergence theorem.
b) State and prove the Riesz-Fischer theorem.

Complex Analysis \& Special Functions \& Partial Differential Equations

Time: $\mathbf{3}$ Hours
Maximum Marks : 70

Answer anv Five questions.

Choosing at least Two from each section.
All questions carrv equal marks.

SECTION - A

Q1) a) Show that $\mathrm{P}_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
b) Prove that $\left(1-2 x z+z^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} z^{n} \mathrm{P}_{n}(x)$

Deduce the first three Legendre polynomials.

Q2) a) With the usual notation, prove that

$$
\begin{array}{ll}
\text { i) } & \mathrm{J}_{-n}(x)=(-1)^{n} \mathrm{~J}_{n}(x) \\
\text { ii) } & \mathrm{J}_{n-1}(x)+\mathrm{J}_{n+1}(x)=\frac{2 n}{x} \mathrm{~J}_{n}(x)
\end{array}
$$

b) Show that $\mathrm{J}_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta, n$ being on integer.

Q3) a) State and prove the necessary and sufficient condition for the integrability of the equation $\mathrm{P} d x+\mathrm{Q} d y+\mathrm{R} d z=0$
b) Solve the equation

$$
z^{2} d x+\left(z^{2}-2 y z\right) d y+\left(2 y^{2}-y z-z x\right) d z=0
$$

Q4) a) Solve $\left(\mathrm{D}^{2}-\mathrm{D}^{1}\right) z=2 y-x^{2}$
b) Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\cos m x \cdot \cos n y$

Q5) a) Solve $r-t \cos ^{2} x+p \tan x=0$ by Monge's method.
b) Find a surface passing through two lines $x=z=0, z-1=x-y=0$ satisfying $r+4 s+4 t=0$.

SECTION - B

Q6) a) For a given power series $\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ define $0 \leq \mathrm{R}<\infty$ by $\frac{1}{\mathrm{R}}=\operatorname{Limsup}\left|a_{n}\right|^{\frac{1}{n}}$. Then prove that (i) if $|z-a|<\mathrm{R}$, then the series converges absolutely (ii) if $|z-a|>\mathrm{R}$, the series diverges (iii) if $0<r<\mathrm{R}$, then the series converges uniformly on $\{z||z| \leq r\}$.
b) Distinguish between differentiability and analycity of a function. Show that $f(z)=\bar{z}$ is not analytic.

Q7) a) State and prove the Cauchy's theorem.
b) Discuss the mapping properties of $\cos z$ and $\sin z$.

Q8) a) Find an analytic function $f: \mathrm{G} \rightarrow c$ where $\mathrm{G}=\{z \mid \operatorname{Re} z>0\}$ such that $f(\mathrm{G})=\mathrm{D}=\{z:|z|<1\}$.
b) State and prove the open mapping theorem.

Q9) a) State and prove the Morera's theorem.
b) Evaluate $\int_{r} \frac{2 z+1}{z^{2}+z+1} d z$ where r is the circle $|z|=2$

Q10) a) Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x$ using the theory of residues.
b) State the residue theorem. Using this theorem evaluate $\int_{0}^{\pi} \frac{d \theta}{3+2 \cos \theta}$

M.Sc. (Previous) DEGREE EXAMINATION, DEC. - 2016
 First Year
 MATHEMATICS
 Theory of Ordinary Differential Equations

Time : 3 Hours
Maximum Marks : 70

Answer anv Five questions
 All questions carry equal marks

Q1) a) If $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{n}}$ are n solutions of $\mathrm{L}(y)=0$ on an internal I, prove that they are linearly independent there if and only if $\mathrm{W}\left(\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{n}}\right)(x) \neq 0 \forall x$ in I.
b) Find the two solutions ϕ_{1}, ϕ_{2} of the equation $y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=0, x>0$ satisfying $\phi_{1}(1)=1, \phi_{2}(1)=0, \phi_{1}^{\prime}(1)=0, \phi_{2}^{\prime}(1)=1$.

Q2) a) Find two linearly independent power series solutions in powers of x for the equation $y^{\prime \prime}+3 x^{2} y^{\prime}-x y=0$.
b) Obtain the Rodrigue's formula for the Legendre's differential equation.

Q3) a) Let M, N be two real valued functions having continuous first partial derivatives on some rectangle $\mathrm{R}:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right|=b$. Then show that the equation $\mathrm{M}(x, y)+\mathrm{N}(x, y) y^{\prime}=0$ is exact in R if and only if $\frac{\partial \mathrm{M}}{\partial y}=\frac{\partial \mathrm{N}}{\partial x}$ in R .
b) Find an integrating factor of the equation $(\cos x) \cos y d x-2(\sin x) \sin y d y=0$ and hence solve it.

Q4) a) Consider $y^{\prime}=3 y+1, y(0)=2$. Show that the successive approximations $\phi_{0}, \phi_{1}, \ldots$ exist for all x. Compute the first four approximations $\phi_{0}, \ldots, \phi_{3}$ to the solution.
b) Show that the function f given by $f(x, y)=x^{2}|y|$ satisfy a Lipschitz condition on $\mathrm{R}:|x| \leq 1,|y| \leq 1$. Show that $\frac{\partial y}{\partial x}$ does not exist at $(x, 0)$ if $x \neq 0$.

Q5) a) Compute a solution for the system $y_{1}^{\prime}=3 y_{1}+4 y_{2}, y_{2}^{\prime}=5 y_{1}+6 y_{2}$.
b) Show that all real valued solutions of the equation $y^{\prime \prime}+\sin y=b(x)$ exist for all real x, where $b(x)$ is continuous for $-\infty<x<\infty$.
Q6) a) State and prove the existence theorem for linear systems and establish the uniqueness.
b) Suppose $y=(8+i, 3 i,-2), z=(i,-i, 2)$ and $w=(2+i, 0,1)$ be vectors in C_{3}. Compute $y-z$. Verify whether these vectors are associative and commutative.

Q7) a) Find the solution of the Riccati equation $\mathrm{W}^{1}-\mathrm{W}^{2}-1=0$.
b) Find a function $\mathrm{Z}(x)$ such that $\mathrm{Z}(x)\left[y^{\prime \prime}+3 y^{\prime}+2 y\right]=\frac{d}{d x}\left[\mathrm{~K}(x) y^{\prime}+m(x) y\right]$

Q8) a) Compute the Green's function for the equation $y^{\prime \prime}-4 y^{\prime}+3 y=x,(-\infty<x<\infty)$. Hence find the general solution.
b) Derive an adjoint equation for $\mathrm{L}(y)=y^{\prime}-\mathrm{A} y=0$ where A is a $n \times n$ matrix. Obtain a condition for the operator L to be self adjoint.

Q9) a) State and prove the Sturm comparison theorem.
b) Put the differential equation $y^{\prime \prime}+f(t) y^{\prime}+g(t) y=0$ into self-adjoint form.

Q10) a) State and prove the Liapunov's inequality.
b) Derive a condition for the equation $\mathrm{P}_{0} u^{\prime \prime}+\mathrm{P}_{1} u^{\prime}+\mathrm{P}_{2} u=0$ to be self-adjoint.

