Total No. of Questions : 10]

[Total No. of Pages : 02

(DM21)

M.Sc. (Second) DEGREE EXAMINATION, DEC. – 2016 (Second Year)

MATHEMATICS

Topology and Functional Analysis

Time : 3 Hours

Maximum Marks : 70

Answer any five questions selecting at least Two from each Section. <u>All questions carry equal marks.</u>

SECTION - A

- **Q1)** a) State and prove the Lindelof's theorem. Deduce that any open base for X has a countable subclass which is also an open base.
 - b) Show that subset of a topological space is dense if and only if it intersects every non empty open set.
- (Q2) a) Prove that the product of any non empty class of compact spaces is compact.
 - b) Show that any continuous mapping of a compact metric space into a metric space is uniformly continuous.
- Q3) a) Prove that a metric space is compact if and only if it is complete and totally bounded.
 - b) Show that every compact metric space has the Bolzano-Weirstrass property.
- *Q4*) a) Show that every compact Hausdorff space is normal.
 - b) State and prove the Tietze Extension theorem.
- **Q5)** a) Show that a subspace of the real line R is connected if and only if it is an interval. In particular, prove that R is connected.
 - b) State and prove the Urysohn's Lemma.

SECTION - B

- *Q6*) Let N and N¹ be normed linear spaces and T is a linear transformation of N into N¹. Then show that the following conditions on T are equivalent.
 - a) T is continuous

- b) $x_n \rightarrow 0 \Rightarrow T(x_n) \rightarrow 0$
- c) There exists $K \ge 0, K \in \mathbb{R}$ such that $||T(x)|| \le K ||x||$ for all $x \in \mathbb{N}$.
- d) If $S = \{x |||x|| < 1\}$ is the closed unit sphere in N, then its image T(S) is bounded in N¹.
- **Q7)** a) State and prove the uniform boundedness theorem.
 - b) State and prove the closed graph theorem.
- **Q8)** a) State and prove the Schwartz inequality. Deduce that the inner product in a Hilbert space is jointly continuous.
 - b) If M is a proper closed linear subspace of a Hilbert space H, then show that there exists a non zero vector Z_0 in H such that $Z_0 \perp M$.
- **Q9)** a) If T is an operator on H for which (Tx, x) = 0 for all x, then show that T = 0. Using this result show that an operator T on H is self adjoint iff (Tx, x) is real $\forall x$.
 - b) Prove that an operator T on H is unitary if and only if it is an isometric isomorphism of H onto itself.
- **Q10)** a) If P is a projection on H with range M and null space N, then prove that $M \perp N$ iff P is self adjoint; and in this case $N = M^{\perp}$.
 - b) If P and Q are the projections on closed linear subspaces M and N of a Hilbert space H, then show that $M \perp N \Leftrightarrow PQ = 0 \Leftrightarrow QP = 0$.

(DM22)

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. (Second) DEGREE EXAMINATION, DEC. – 2016 Second Year

MATHEMATICS

Measure and Integration

Time : 3 Hours

Maximum Marks: 70

<u>Answer any Five questions.</u> <u>All questions carry equal marks.</u>

- **Q1)** a) Define a countable set. If A is a countable set then prove that the set of all finite sequences from A is also countable.
 - b) State and prove the Heine-Borel theorem.
- **Q2)** a) If m * E = 0, show that E is measurable.
 - b) If E_1 and E_2 are measurable, then show that $E_1 \cup E_2$ is measurable.
- **Q3)** a) Let $\langle E_n \rangle$ be an infinite decreasing sequence of measurable sets (ie). $E_{n+1} \subset E_n \forall n$. If $m E_1$ is finite, then prove that $m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n)$.
 - b) State and prove the Little Woods third principle.
- Q4) a) If f and g are non negative measurable functions then prove that

i)
$$\int_{E} cf = c \int_{E} f$$

ii)
$$\int f + \sigma = \int f + \int \sigma$$

$$E = E = E$$

iii) If
$$f \le g$$
 a.e, then $\int_{E} f \le \int_{E} g$.

- b) State and prove the Fatou's Lemma. Deduce the monotone convergence theorem.
- Q5) a) State and prove the Labesgue convergence theorem.
 - b) Define convergence in measure. If $f_n \to f$ are then show that $f_n \to f$ in measure. Also if $\{f_n\}$ is a sequence that converges to f in measure, then show that \exists a subsequence $\{f_{nk}\}$ that converge to f a.e.

- **Q6)** a) Prove that a function f is of bounded variation on [a, b] if and only if f is the difference of two monotone real valued functions on [a, b].
 - b) Let f be an integrable function on [a, b] and that $F(x) = F(a) + \int_a^x f(t)dt$. Then prove that F'(x) = f(x) for almost all x in [a, b].
- Q7) a) State and prove the Holder's inequality.
 - b) Show that the $|\underline{P}|$ spaces are complete.
- **Q8)** a) Let E be a measurable set such that $0 < \gamma E < \infty$. Then prove that there is a positive set A contained in E with $\gamma A > 0$.
 - b) State and prove the Lebesgue decomposition theorem.
- **Q9)** a) Suppose that for each α in a dense set D of real numbers there is assigned a set $B_{\alpha} \in \mathscr{B}$ such that $\mu(B_{\alpha} \sim B_{\beta}) = 0$ for $\alpha < \beta$. Then show that there is a measurable function f such that $f \le \alpha$ a.e on B_{α} and $f \ge \alpha$ a.e on $X \sim B_{\alpha}$. If g is any other function with this property then g = f a.e.
 - b) State and prove the Hahn decomposition theorem.
- *Q10*) a) Prove that the set function μ^* is an outer measure.
 - b) State and prove the Caratheodory theorem.

(DM23)

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. (Second) DEGREE EXAMINATION, DEC. – 2016 Second Year MATHEMATICS

Analytical Number Theory and Graph Theory

Time : 3 Hours

Maximum Marks : 70

Answer any Five questions selecting at least 2 from each section All questions carry equal marks

SECTION - A

- (Q1) a) For all $x \ge 1$, prove that $\sum_{n \le x} d(n) = x \log x + (2c-1)x + 0(\sqrt{x})$
 - b) For x > 1, prove that $\sum_{n \le x} \phi(n) = \frac{3}{\pi^2} x^2 + 0(x \log x).$
- **Q2)** a) For every $x \ge 1$, prove that $[x]! = \frac{\pi P^{\alpha(P)}}{P < x}$

Where the product is extended over all primes $\leq x$ and $\alpha(P) = \sum_{m=1}^{\infty} \left[\frac{x}{P^m} \right]$.

- b) If $x \ge 2$, prove that $\log[x]! = x\log x - x + 0(\log x)$ and hence prove that $\sum_{n \le x} \wedge(n) \left[\frac{x}{n}\right] = x\log x - x + 0(\log x)$
- **Q3)** a) Prove that the following holds

For
$$x \ge 2$$
, $\theta(x) = \pi(x) \log x - \int_{2}^{x} \frac{\pi(t) dt}{t}$

b)
$$\pi(x) = \frac{\theta(x)}{\log x} + \int_{2}^{x} \frac{\theta(t)}{t \log^{2} t} dt$$

Q4) a) Let P_n denote n^{th} prime. Then prove that the following asymptotic relations are logically equivalent.

i)
$$\lim_{x \to \infty} \frac{\pi(x) \log x}{x} = 1$$

ii)
$$\lim_{x \to \infty} \frac{\pi(x) \log \pi(x)}{x} = 1$$

iii)
$$\lim_{x \to \infty} \frac{P_n}{x} = 1$$

ii)
$$\lim_{n \to \infty} \frac{-n}{n \log n} = 1$$

b) Prove that the relation M(x) = 0(x) as $x \to \infty$ implies $\psi(x) \sim x$ as $x \to \infty$.

SECTION - B

- **Q5)** a) Prove that a connected Graph G is Euler Graph if and only if all vertices of G are of even degree.
 - b) In a connected Graph G with exactly 2K odd vertices, prove that there exist K-edge disjoint subgraphs such that they together contain all edges of G and that each is a unicursal graph.
- Q6) a) Prove that a graph is a tree if and only if it is minimally connected.
 - b) Prove that the number of labeled trees with *n*-vertices $(n \ge 2)$ is n^{n-2} .
- **Q7)** a) Prove that every circuit has an even number of edges in a common with any cut set.
 - b) Prove that the ring sum of any two cut sets in a graph is either a third cut set or an edge disjoint union of cut sets.
- (Q8) a) Prove that the complete graph of five vertices is non planar.
 - b) Prove that any simple planar graph can be embedded in a plane such that every edge is drawn as a straight line segment.
- **Q9)** a) Prove that a connected graph with n-vertices and e-edges has e n + 2 regions.
 - b) Prove that the set consisting of all the circuits and the edge disjoint unions of circuits in a graph G is an abelian group under the ring sum operation \oplus .
- **Q10)** a) Prove that the set consisting of all the cut sets and the edge disjoint unions of cut sets in a graph G is an abelian group under the ring sum operation.
 - b) Prove that in a vector space of a graph the circuit subspace and the cut-set subspace are orthogonal to each other.

(DM24)

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. (Second) DEGREE EXAMINATION, DEC. – 2016

Second Year MATHEMATICS

Rings and Modules

Time : 3 Hours

Maximum Marks: 70

<u>Answer any five questions</u> <u>All questions carry equal marks</u>

- *Q1)* a) Define a Boolean algebra
 - In a Boolean algebra B prove that
 - i) $(a \wedge b)' = a' \vee b'$
 - ii) $(a \lor b)' = a' \land b'$ for all $a, b \in B, a'$ stands for complement of a.
 - b) Let ϕ be a homomorphism of a ring R into another ring. Then Prove that $R/_{Ker\phi}$ is isomorphic to $Im\phi$.
- **Q2)** a) Prove that the set of all subrings of a ring form a complete lattice.
 - b) Prove that every proper ideal of a ring is contained in a maximal proper ideal.
- **Q3)** a) Let B be a submodule of a A. Then prove that A is Noetherian if and only if B and $\frac{A}{B}$ are Noetherian.
 - b) Prove that a module has a composition series if and only if it is both artinian and Noetherian.
- **Q4)** a) Prove that an ideal P of a ring R is prime if and only if R_p is an integral domain.
 - b) Prove that a commutative ring is an integral domain if and only if 0 is a prime ideal of R.
- **Q5)** a) Define radical of a ring R. Prove that radical of a ring R consists of all elements $r \in \mathbb{R}$ such that 1-rs is a unit for all $s \in \mathbb{R}$.

- b) Define a semi primitive ring R. Prove that the quotient $\frac{R}{Rad R}$ is a semi primitive ring where Rad R is the radical of R.
- Q6) a) In a commutative ring prove that the following holds.
 - i) Every non unit is a zero divisor.
 - ii) Every prime ideal is maximal
 - iii) Every principal ideal is a direct summand.
 - b) Prove that every commutative regular ring is semi primitive.
- Q7) Prove that the following conditions concerning the module A are equivalent.
 - a) A is completely reducible
 - b) A has no proper large submodule
 - c) L(A) is complemented
- **Q8)** a) In a Noetherian ring prove that every nil radical is nil potent.
 - b) State and prove Hilbert Basis theorem.
- *Q9*) a) Prove that every free module is projective.
 - b) If M is the direct sum of a family of modules $\{Mi | i \in I\}$ then M is projective if and only if each M*i* is projective.
- **Q10)** a) Define an injective module. Prove that an abelian group is injective module if and only if it is divisible.
 - b) Show that every R-module is injective if and only if R is completely reducible.

