Total No. of Questions : 12] [Total No. of Pages : 02 M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER - 2018

(First Year)

CHEMISTRY

General Chemistry

Time : 3 Hours

Maximum Marks : 70

(DCHE01)

SECTION – A

 $(4 \times 7\frac{1}{2} = 30)$

Answer any Four questions from the following

- **Q1**) Write about Quantization of energy of molecules in molecular spectroscopy.
- **Q2)** Explain the spectrum of a rigid rotor in microwave spectroscopy.
- Q3) Write the sources and detectors used in UV and visible spectroscopy.
- Q4) By taking a suitable example, explain the vibrational spectrum of a diatomic molecule.
- Q5) Explain student 'F' test.
- Q6) How do you collect different types of solid samples for analysis?
- **Q7)** Explain INPUT and OUTPUT statements in MS-Fortran.
- **Q8)** Explain the components and functions of a main frame computer.

$\underline{SECTION - B} \qquad (4 \times 10 = 40)$ Answer All questions. Choosing one from each unit

<u>Unit - I</u>

Q9) a) Write the principle of Microwave Spectroscopy. Explain the isotopic effects in rotation spectra by taking examples.

OR

b) Write the important components, working principle and applications of NMR spectroscopy.

<u>Unit - II</u>

Q10) a) Explain the rotational fine structure of electronic vibration transitions in UV-visible spectroscopy with examples.

OR

b) Write the principle and applications of Infra Red (IR) spectroscopy.

<u>Unit - III</u>

Q11) a) Explain the theory of sampling techniques and general methods for the storage and preservation of samples.

OR

b) Explain regression analysis.

<u>Unit - IV</u>

Q12) a) Write a program for Beer's law by least squares method.

OR

b) Explain control statements in fortran.

(DCHE02) Total No. of Questions : 12] [Total No. of Pages : 02 M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER - 2018

(First Year)

CHEMISTRY

Inorganic Chemistry

Time : 3 Hours

Maximum Marks : 70

<u>Part – A</u>

 $(4 \times 7\frac{1}{2} = 30)$

Answer any Four questions from the following

- **Q1)** Explain Compton effect.
- Q2) Write about term symbols and spectroscopic states.
- **Q3)** Draw and explain the Molecular orbital diagram of H_2 molecule.
- Q4) Write about Fajan's rules and Lattice theory.
- Q5) Explain splitting of 'd' orbitals in octahedral complexes.
- *Q6*) Define stability of complexes and explain Chelate effect on the stability of complexes with an example.
- Q7) Explain SN¹ ligand substitution reaction mechanism with an example.
- Q8) By taking examples, explain structure and bonding in intercalation compounds.

<u>Part – B</u> (4 x 10 = 40) <u>Answer All questions. Choosing one from each unit</u> Unit – I

Q9) a) Discuss wave equation for Hydrogen like atom.

OR

b) Explain variation method and its applications.

<u>Unit - II</u>

Q10) a) Write the postulates of Molecular Orbital Theory. Make a comparison of M.O and V.B Theories.

OR

b) How do you explain shapes of molecules according to VSEPR Theory? Add a note on hydrogen bonding.

<u>Unit - III</u>

Q11) a) How do you determine the stability constants of complexes by optical method?

OR

b) Explain John-Teller effect and its applications.

Unit - IV

Q12) a) Write the synthesis, properties and structure of silicates.

OR

b) Explain the mechanism of electron transfer reactions by giving suitable examples.

(DCHE03) Total No. of Questions : 12] [Total No. of Pages : 02 M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER - 2018

First Year

CHEMISTRY

Organic Chemistry

Time : 3 Hours

Maximum Marks : 70

SECTION – A

 $(4 \times 7\frac{1}{2} = 30)$

Answer any Four questions

Q1) Explain about Anti-Aromaticity and Homoaromaticity.

- Q2) Write a note on Asymmetric synthesis.
- Q3) Describe the stability and reactivity of Nitrenes.
- **Q4)** Explain SN^1 and SN^2 mechanisms.
- Q5) Write a note on Diazonium coupling.
- *Q6)* Explain about Hydroboration.
- Q7) Write the mechanism of condensation reactions involving enolates-Aldol reaction.
- **Q8)** Explain orientation in pyrolytic elimination.

<u>SECTION – B</u> <u>Answer All questions</u>

Q9) a) Describe the Aromaticity in benzenoid and non-benzenoid compounds.

OR

- b) Write a note on :
 - i) Biphenyl compounds.
 - ii) Allenes.

Q10) a) Describe structure, stability and reactivity of carbocation and carbanians.

OR

- b) Explain classical and nonclassical carbocations and phenonium ions.
- *Q11*) a) Explain the following:
 - i) Gattermann-Koch reaction.
 - ii) Sandmayer reaction.

OR

- b) Explain Allylic halogenation and auto-oxidation.
- *Q12*) a) Explain the following:
 - i) Benzoin reaction.
 - ii) Stobbe reaction.

OR

b) Write a note on E_1 , E_2 and E_{1CB} mechanism.

$(4 \times 10 = 40)$

(DCHE04) Total No. of Questions : 12] [Total No. of Pages : 02 M.Sc. (Previous) DEGREE EXAMINATION, DECEMBER - 2018

(First Year)

CHEMISTRY

Physical Chemistry

Time : 3 Hours

Maximum Marks: 70

SECTION – A

 $(4 \times 7\frac{1}{2} = 30)$

Answer any Four questions from the following

- **Q1**) State and explain second law of Thermodynamics and write its applications.
- **Q2)** State and explain Gibbs-Helmholtz equation.
- **Q3)** Explain theory of gamma decay.
- Q4) Write the principle and applications of radiocarbon dating.
- Q5) Explain transport number and its determination of an electrolyte.
- **Q6)** Draw and explain Langmuir adsorption iso-therm.
- **Q7)** Draw and explain Jablonsky diagram.
- Q8) Explain acid base catalysis reaction mechanism with examples.

SECTION – B

 $(4 \times 10 = 40)$

Answer All questions, Choosing one from each unit

<u>Unit - I</u>

Q9) a) Explain Maxwells thermodynamic relations.

OR

b) Write about free energy and free energy changes in ideal gases.

<u>Unit - II</u>

Q10) a) Write the properties and applications of semiconductors and conductors.

OR

b) Explain Bragg's equation and Bravais lattices.

<u>Unit - III</u>

Q11) a) How do you determine the cell concentration without transference.

OR

b) Explain BET equation and write the determination of surface area by BET method.

Unit - IV

Q12) a) Explain Collision theory of reaction rates.

OR

b) Explain primary and secondary salt effects on reaction rates. What are parallel reactions? Give examples.

