(DMSTT01)

Total No. of Questions : 10] [Total No. of Pages : 02 M.Sc. DEGREE EXAMINATION, DECEMBER – 2018 First Year STATISTICS Probability and Distribution Theory

Time	:	3	Hours	
I IIIIC	٠	•	IIVUIS	

Maximum Marks : 70

<u>Answer any Five questions</u> <u>All questions carry equal marks</u> [5 × 14 = 70]

- *Q1*) a) What is Discrete and Continuous Distribution functions? Explain.
 - b) State and prove Borel-Cantelli lemma.
- **Q2)** a) What is Statistical Independence? Explain.
 - b) State and prove Kolmogorov theorem.
- Q3) a) Explain the concept of convergence of sequence of random variables.
 - b) Explain Kolomogorov's Strong law of large numbers for Independent random variables.
- **Q4)** a) State and prove De-Moivre's theorem.
 - b) Explain Lyapunov's form of Central Limit theorem.
- **Q5)** a) What is Probability Generating Function? Explain its characteristics.
 - b) What is Discrete Distribution? Write its features.
- *Q6*) a) What is Compound Poisson? Explain in brief.
 - b) What is Compound Binomial? Explain in brief.
- *Q7*) a) What is Continuous Distribution? Explain.
 - b) State and prove Laplace principle.

- *Q8)* a) Prove Weibull theorem in brief.
 - b) Write about Logistics Regression in brief.
- *Q9*) a) Derive the joint Distribution of j^{th} and K^{th} Order Statistics of $1 \le j < K \le 4$.
 - b) Obtain the joint pdf of J^{th} and K^{th} Order Statistics. Also find the marginal p.d.f. of r^{th} order statistics.
- **Q10)** a) Derive the p.d.f of F-statistics with (m,n) degrees.
 - b) Write about Chi-square distribution. List out its applications and properties.

(DMSTT02)

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. DEGREE EXAMINATION, DEC. – 2018 First Year STATISTICS Statistical Inference

Time : 3 Hours

Maximum Marks: 70

<u>Answer any Five questions</u> <u>All questions carry equal marks</u> [5 × 14 = 70]

Q1) a) State and prove Cramer-Rao inequality theorem.

- b) What is Sufficiency? If X_1, X_2, \dots, X_n is a random variable from $f(x:\theta) = \theta^x (1-\theta)^{1-x}, x = 0, 1, 0 < \theta < 1$. Obtain a sufficient Statistic for θ .
- **Q2)** a) State and prove Lehmann-Scheffe theorem.
 - b) What is Exponential Class? Explain.
- **Q3)** a) What is Consistency? Explain in detail.
 - b) Explain the concepts of CAN, CAUM estimators. Explain the construction of CAN estimators based on moments.
- **Q4)** a) What is Efficiency? Explain in detail.
 - b) For a given sample of 250 items drawn from a large population, the Mean is 65 and S.D. is 5. Find the 95% confidence limits for the Population Mean.
- **Q5)** a) Find UMP tests for testing $H_0: \theta = \theta_0$ against one sided alternatives in $N(\theta, \sigma^2)$, where σ^2 is unknown.
 - b) What is the difference between Testing and Interval Estimation? Explain.

- *Q6*) a) What is Monotone Likelyhood ratio? Explain in brief.
 - b) Let $X_1, X_2 \dots X_n$ be a random sample from a Poisson Distribution with parameter λ . Derive the Likelyhood ratio tests for $H_0: \lambda = \lambda_0$ against $H_1: \lambda > \lambda_0$ and $H_1: \lambda < \lambda_0$. Then show that they are identical with UMP tests.
- *Q7*) a) Explain Signed-Rank Sum test with an example.
 - b) How can you Check Randomness for a given data? Explain in brief.
- *Q8*) a) Write the procedure of Median test for large samples.
 - b) What are the applications of Kolmogorov-Smirnov test? How this test is different to Chi-Square test?
- *Q9*) a) Describe SPRT in the case of Poisson Distribution.
 - b) Derive SPR test to test the Mean of $N(\mu, \sigma^2), \sigma^2$ is known. Obtain OC and ASN functions.
- **Q10)** a) Explain SPR test and show that it terminates with Probability one.
 - b) A random variable X has $N(\mu, \sigma^2)$, where σ^2 is known. Develop an SPR test for testing $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_1$. If $\alpha = B$ then prove that the ASN under H_0 and H_1 are equal.

(DMSTT03)

[Total No. of Pages : 02

M.Sc. DEGREE EXAMINATION, DEC. – 2018 First Year STATISTICS Sampling Theory

Time : 3 Hours

Total No. of Questions : 10]

Maximum Marks : 70

<u>Answer any Five questions</u> <u>All questions carry equal marks</u> $[5 \times 14 = 70]$

- *Q1*) a) What are Sampling Errors? Explain it's sources also write few examples to Errors in Sampling.
 - b) What is Complete Enumeration Surveys? Write its advantages.
- **Q2)** a) What are the important aspects to be considered while planning Sample Survey?
 - b) What is the structure of National Sample Survey Organisation?
- Q3) a) Explain the Determination of a sample by Neyman allocations method?
 - b) What is stratified Random Sampling? Explain its procedure.
- *Q4)* a) What is Simple Random Sampling? Explain its merits and drawbacks.
 - b) How do you estimate Population Mean and proportion?
- **Q5)** a) Explain the procedure of Cluster Sampling? Also write its advantages.
 - b) How do you estimate Mean and Variance with Systematic Sampling?
- *Q6*) a) Write the few applications of Cluster Sampling in Social Science.
 - b) Explain Optimum Cluster size for fixed cost.
- Q7) a) Explain PPS Sampling with replacement also write its procedure.
 - b) What is two-stage Sampling? Write its drawbacks.

- *Q8*) a) Explain the applications of Multi-stage Sampling in Research.
 - b) How do you estimate Mean and Variance with two-stage Sampling.
- *Q9*) a) What are the conditions required for Optimum ratio estimate?
 - b) What is Stratified Sampling? Explain its features and drawbacks.
- **Q10)** a) What is Ratio Estimation? Explain in brief.
 - b) What is Regression Estimates? Explain in brief.

(DMSTT04)

Total No. of Questions : 10] [Total No. of Pages : 02 M.Sc. DEGREE EXAMINATION, DECEMBER – 2018 First Year STATISTICS Design of Experiments

Time : 3 Hours

Maximum Marks : 70

<u>Answer any Five questions</u> All questions carry equal marks $[5 \times 14 = 70]$

Q1) a) What is a Determinant? Explain its properties with examples.

b) Find the Rank and Inverse of a Matrix $A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & -1 & 6 \\ -1 & 5 & 1 \end{bmatrix}$

Q2) a) State and prove Coehran's theorem.

- b) Explain the terms, "Orthogonal Matrix", "idempotent Matrix" and "Rank of a Matrix".
- **Q3)** a) What is Linear Estimation? Explain its Applications.
 - b) State and prove Gauss-Markov theorem.
- **Q4)** a) What is Generalized Linear Model? State and prove necessary and sufficient conditions for estimating a linear parametric functions.
 - b) State and prove Atken's theorem.
- Q5) a) Write the procedure of one-way ANOVA with equal number of observations.
 - b) Explain the procedure of Analysis of Co-variance of two-way classification.
- *Q6*) a) What is the difference between Random and Mixed effect models? Explain.
 - b) Write the procedure of ANOVA with three-way classification.

- **Q7)** a) Derive the Statistic associated with testing the Equality of K treatment Effects in CRD.
 - b) Explain Latin Square Design model. Also write its practical applications.
- **Q8)** a) Explain the analysis of LSD with a missing Row and a Missing column.
 - b) Determine the efficiency of RBD over CRD.
- *Q9*) a) What are Factorial Experiments? Explain 3^3 Factorial Experiment.
 - b) Describe Balanced incomplete block Design. Write its procedure.
- **Q10)** a) Explain the analysis of 2^2 Factorial Experiment.
 - b) Explain Yate's Method in 2^3 Factorial Experiment.

