(DM 01)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019.
 First Year
 Mathematics
 ALGEBRA

Time : Three hours
Maximum : 70 marks
Answer any FIVE of the following questions.
All questions carry equal marks.

1. (a) If ϕ is a homomorphism of G into \bar{G} with kernel K, then prove that $G / K \approx \bar{G}$.
(b) State and prove Sylow's theorem for abelian groups.
2. (a) Prove that every permutation is a product of 2-cycle.
(b) Find the all normal subgroups of S_{4}.
3. (a) Prove that every finite abelian group is the direct product of cyclic groups.
(b) If G and G^{\prime} are isomorphic abelian groups, then prove that for every integer $s, G(s)$ and $G^{\prime}(s)$ are isomorphic.
4. (a) If U is an ideal of R and $1 \in U$, prove that $U=R$.
(b) If U is an ideal of ring R, then prove that R / U is a ring and is a homomorphic image of R.
5. (a) If R is a unique factorization domain, then show that $R[x]$ is also unique factorization domain.
(b) Prove that when F is a field, $F\left[x_{1}, x_{2}\right]$ is not a principle ideal ring.
6. (a) If a is any real number, Prove that $\left(a^{m} / m!\right) \rightarrow 0$ as $m \rightarrow 0$.
(b) If $m>0$ and n are integers, prove that $e^{\frac{m}{n}}$ is transcendental.
7. (a) Prove that if α, β are constructible, then so are $\alpha \pm \beta \alpha \beta$ and α / β (when $\beta \neq 0$)
(b) Show that any field of characteristic 0 is perfect.
8. (a) Construct a polynomial of degree 7 with rational coefficients whose Galois group over Q is S_{7}.
(b) Show that the polynomial $p(x)=x^{5}-6 x+3$ over Q are irreducible and have exactly two non-real roots.
9. (a) Show that the Lattice of invariant subgroup of any group is modular.
(b) If a and b are any two elements of a modular lattice, then show that the intervals $I[a \cup b, a]$ and $I[b, a \cap b]$ are isomorphic.
10. (a) Prove that the following two types of abstract systems are equivalent:
(i) Boolean algebra
(ii) Boolean ring with identity
(b) If the elements $a_{1}, a_{2}, \ldots a_{n}$ are independent, then prove that $\left(a_{1} \cup a_{2} \ldots \cup a_{r} \cup a_{r+1}, \ldots \cup a_{s}\right) \cap$ $\left(a_{1} \cup a_{2} \ldots \cup a_{r} \cup a_{s+1}, \ldots . \cup a_{s t}\right)=a_{1} \cup \ldots \cup a_{r}$

(DM 02)
M.Sc. DEGREE EXAMINATION, DECEMBER 2019.
First Year
Mathematics
ANALYSIS
Maximum : 70 marks

Time : Three hours
Answer any FIVE of the following questions.
All questions carry equal marks.

1. (a) Let $\left\{E_{n}\right\}$ be a (finite or infinite) collection of sets E_{α}. Then prove that

$$
\left(\bigcup_{\alpha} E_{\alpha}\right)^{c}=\bigcap_{\alpha}\left(E_{\alpha}^{c}\right) .
$$

(b) If X is a metric space and $E \subset X$, then prove that
(i) E is closed
(ii) $E=\bar{E}$ if and only if E is closed
(iii) $\bar{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.
2. (a) Prove that A sub set E of the real line R^{1} is connected if and only if it has the following property : If $x \in E, y \in E$ and $x<z<y$, then $z \in E$.
(b) Construct a bounded set of real numbers with exactly three limit points.
3. (a) If $\sum a_{n}$ converges, and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.
(b) Prove that $\frac{a_{n}}{s_{n}^{2}} \leq \frac{1}{s_{n-1}}-\frac{1}{s_{n}}$, hence deduce that $\sum \frac{a_{n}}{s_{n}^{2}}$.
4. (a) If f is continuous mapping of a compact metric space X into Y. And if E is a connected subset of X, then prove that $f(E)$ is connected.
(b) If f be monotonic on (a, b). Then prove that the set of points of $f(a, b)$ at which f is discontinuous is at most countable.
5. (a) State and prove fundamental theorem of calculus.
(b) State and prove Integration by parts theorem.
6. (a) If f is continuous on $[a, b]$ then prove that $f \in \mathcal{R}$ on $[a, b]$.
(b) If f is monotonic on $[a, b]$, and if α is continuous on $[a, b]$, then prove that $f \in \mathcal{R}$.
7. (a) Prove that, there exist a real continuous function on the real line which is nowhere differentiable.
(b) Suppose $\left\{f_{n}\right\}$ is a sequence of functions defined on E, and suppose $\left|f_{n}(x)\right| \leq M_{n} \quad(x \in E, n=1,2,3, \ldots)$ then prove that $\sum f_{n}$ converges uniformly of E if $\sum M_{n}$ converge .
8. State and prove Stone-Weierstrass theorem.
9. (a) Suppose ϕ is count ably additive on a ring R. Suppose $A_{n} \in \mathcal{R}(n=1,2,3 \ldots), A_{1} \subset A_{2} \ldots, A \in \mathcal{R}$ and $A=\bigcup_{n=1}^{\infty} A_{n}$, then prove that as $n \rightarrow \infty, \phi\left(A_{n}\right) \rightarrow \phi(A)$.
(b) Let f and g are measurable real-valued functions defined on X, let F be real and continuous on R^{2}, and put $h(x)=F(f(x), g(x)),(x \in X)$ then prove that h is measurable.
10. (a) State and prove Lebesgue's dominated theorem.
(b) Suppose that $f=f_{1}+f_{2}$, where $f_{i} \in \mathscr{L}(\mu)$ on $E(i=1,2,3 \ldots)$, then prove that $f \in \mathscr{L}(\mu)$ and $\int_{E} f d \mu=\int_{E} f_{1} d \mu+=\int_{E} f_{2} d \mu$.

(DM 03)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019.

First Year
Mathematics

COMPLEX ANALYSIS AND SPECIAL FUNCTIONS AND PARTIAL DIF. EQU.

Time : Three hours Maximum : 70 marks

Answer any FIVE of the following questions, selecting at least two questions from each section.

All questions carry equal marks.

SECTION A

1. (a) Prove that
(i) $c+\int p_{n} d x=\left(p_{n+1}-p_{n-1}\right) /(2 n+1)$
(ii) $\int_{x}^{1} P_{n} d x=\left(P_{n-1}-P_{n+1}\right) /(2 n+1)$
(b) State and prove orthogonal properties of Legendre's polynomial.
2. (a) Expand x in a series of the form $\sum_{r=1}^{\infty} C_{r} J_{l}(\lambda, x)$ valid for the region $0 \leq x \leq 1$, where λ_{r} are the roots of the equation $J_{1}(\lambda)=0$.
(b) If λ_{i} are positive roots of $J_{0}(\lambda)=0$, show that $\frac{1-x^{2}}{8}=\sum_{i=l}^{\infty} \frac{J_{0}(\lambda, x)}{\lambda_{i}{ }^{3} J_{1}\left(\lambda_{i}\right)}$, where $-1<x<1$.
3. (a) Solve $t(y+z) d x+t(y+z+1) d y+t d z-(y+z) d t=0$
(b) Solve $y z^{2}\left(x^{2}-y z\right) d x+z x^{2}\left(y^{2}-z x\right) d y+x y^{2}$ $\left(z^{2}-x y\right) d z=0$
4. (a) Solve $\cos (x+p) p+\sin (x+y) q=z$.
(b) Solve $\left(D^{2}-D D^{\prime}-2 D^{\prime 2}\right) z=\left(2 x^{2}+x y-y^{2}\right)$
$\sin x y-\cos x y$.
5. (a) Solve $r x^{2}-3 s x y+2 t y^{2}+p x+2 q y=x+2 y$ by Monge's method.
(b) Solve $\left(3 D^{2}-2 D^{\prime 2}+D-1\right) z=4 e^{x+y} \cos (x+y)$.

SECTION B

6. (a) Let $R(z)$ be a rational function of z, show that $\bar{R}(z)=R(\bar{z})$ if all the coefficients in $R(z)$ are real.
(b) Calculate the square roots of $i, \sqrt{3}+3 i$ and cube roots of i.
7. (a) If $\sum a_{n}$ converges absolutely then prove that $\sum a_{n}$ converges.
(b) If G is open and connected and $f: G \rightarrow C$ is differentiable with $f^{\prime}(z)=0$ for all z in G then show that f is constant.
8. (a) State and prove Goursat's theorem.
(b) Evaluate $\int_{\gamma} \frac{d z}{z^{2}+\pi^{2}}$ where $\gamma(\theta)=\theta e^{i \theta}$ for $0 \leq \theta \leq 2 \pi$.
9. (a) Show that $\int_{0}^{\infty} \frac{x^{-c}}{x+1} d x=\frac{\pi}{\sin \pi c}$ if $0<c<1$.
(b) State and prove general version of Rouche's theorem for curves other than circle in G.
10. (a) State and prove Maximum Modulus theorem.
(b) Evaluate $\int_{0}^{\infty} \frac{\cos x-1}{x^{2}} d x$.

M.Sc. DEGREE EXAMINATION,

 DECEMBER 2019.First Year
Mathematics

THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

Time : Three hours
Maximum : 70 marks
Answer any FIVE of the following questions.
All questions carry equal marks.

1. (a) State and prove Uniqueness theorem.
(b) If $\phi_{1}, \ldots \phi_{n}$ be n solutions of $L(y)=0$ on the interval, then show that they are linearly independent if and only if $W\left(\phi_{1}, \ldots \phi_{n}\right)(x) \neq 0$) for all x in I.
2. (a) Verify the functions ϕ_{1} satisfies the equation $y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0, \phi_{1}(x)=e^{x^{2}}$ and find a second independent solution.
(b) Find two linearly independent power series solutions of $y^{\prime \prime}+3 x^{2} x y^{\prime}-x y=0$.
3. (a) Solve $\left(2 y e^{2 x}+2 x \cos y\right) d x+\left(e^{2 x}-x^{2} \sin y\right) d y$.
(b) Let M, N be two real valued functions which has continuous first partial derivatives on some rectangle $R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b$. Then show that $M(x, y)+N(x, y) y^{\prime}=0$ is exact in R if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
4. (a) Find the first four successive approximations $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ for $y^{\prime}=1+x y, y(0)=1$.
(b) By computing appropriate Lipschitz constants, show that $f(x, y)=x^{2} \cos ^{2} y+y \sin ^{2} x$, on $S:|x| \leq 1,|y|<\infty$. satisfy Lipschitz conditions on the sets S indicated.
5. (a) Suppose $y=(8+i, 3 i-2) ; z=(i,-i, 2) ; w=(2+i, 0,1)$ are vector in C_{3}, then
(i) Compute $y+z$
(ii) Compute $y-z$.
(b) Let ϕ be the vector-valued function defined for all real x by $\varphi(x)=\left(x, x^{2}, i x^{4}\right)$, then compute
(i) $\quad \phi(1)$
(ii) $\quad \phi^{\prime}$ and $\phi^{\prime}(2)$
(iii) $\int_{-1}^{1} \phi(x) d x$.
6. (a) State and prove Non-local existence theorem.
(b) Show that all solutions with values in R_{2} of the following system exists for all real
$x y_{1}^{\prime}=a(x) \cos y_{1}+b(x) \sin y_{2}, y_{2}^{\prime}=c(x) \sin y_{1}+d(x) \cos y_{2}$ where a, b, c, d are polynomials with real -coefficients.
7. (a) Find the general solution of Riccatis equation $y^{\prime}=y^{2}-2 y+2$.
(b) Find the greens function of the boundary value problem $y^{\prime \prime}+y=-f(x), y(0)=0, y(1)=0$.
8. (a) Show that if z_{1}, z_{2}, z_{3} are any four different solutions of the Riccati equation.
$y^{\prime}+a(x) y+b(x) y^{2}+c(x)=0$, then show that $\frac{y-y_{2}}{y-y_{1}}=\frac{y_{3}-y_{1}}{y_{3}-y_{2}}$.
(b) Find the functions $z(x), k(x) m(x)$ such that $z(x)\left[x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y\right]=\frac{d}{d x}\left(k(x) y^{\prime}+m(x) y\right) \quad$ and \quad hence solve $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0, x>0$.
9. (a) State and prove strum seoaration theorem.
(b) Solve $x^{2} y^{\prime \prime}-2 x y^{\prime}+\left(2+x^{2}\right) y=0, x>0$.
10. (a) State and prove Gronwalls inequality.
(b) Discuss the oscilation of Bessel equation

$$
x^{3} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 .
$$

