(DM 21)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019. Second Year Mathematics

TOPOLOGY AND FUNCTIONAL ANALYSIS

Time: Three hours Maximum: 70 marks

Answer any FIVE of the following questions, selecting at least Two questions from each Section.

All questions carry equal marks.

SECTION - A

- 1. (a) Let T_1 and T_2 be two topologies on anon-empty set X, and show that $T_1 \cap T_2$ is also a topology on X.
 - (b) Show that a subset set of a topological space is dense ⇔ it intersects every non-empty open set.
- 2. (a) Prove that a closed subspace of a complete metric space is compact '⇔ it is totally bounded.
 - (b) Prove that any continuous mapping of a compact metric space into a metric space is uniformly continuous.
- 3. (a) State and prove Ascolis theorem.
 - (b) Prove that a metric space is compact ⇔ it is totally bounded and complete.
- 4. (a) Show that any finite T_1 -space is discrete.
 - (b) Prove that a topological space is a T_1 -space \Leftrightarrow each point is a closed set.
- 5. (a) State and prove a generalization of Tietze's theorem which relates to functions whose values lie in \mathbb{R}^n .
 - (b) State and prove Urysohn's lemma.

SECTION - B

- 6. (a) Define Banach Space and give some examples.
 - (b) Let N and N' be normed linear space and Ta linear transformation of N into N'. Then show that the following conditions on T are all equivalent to one another:
 - (i) T is continuous.

- (ii) T is continuous at the origin, in the sense that $x_n \to 0 \Rightarrow T(x_n) \to 0$.
- (iii) There exist a real number $K \ge 0$ with the property that $||T(x)|| \le K||x||$ for every $x \in N$.
- (iv) If $S = \{x : ||x|| \le 1\}$ is closed unit space in N, then its image T(S) is bounded set in N'.
- 7. (a) State and prove open mapping theorem.
 - (b) State and prove closed graph theorem.
- 8. (a) Show that the parallelogram law is not true in $l_1^n (n > 1)$.
 - (b) State and prove the Uniform Boundedness Theorem.
- 9. (a) Show that $\left\|TT^*\right\| = \left\|T\right\|^2 9a$. State and prove Bessel's inequality.
 - (b) State and prove Bessel's inequality.
- 10. (a) If P and Q are the projections on a closed linear subspaces M and N of H, prove that PQ is a projection if and only if PQ = QP. In this case, show that PQ is the projection on $M \cap N$.
 - (b) If T is an operator on H for which $(T_{x,x}) = 0$ for all x, then prove that T = 0.

M.Sc. DEGREE EXAMINATION,

DECEMBER 2019.

Second Year Mathematics

MEASURE AND INTEGRATION

Time: Three hours Maximum: 70 marks

Answer any FIVE questions.

All questions carry equal marks.

- 1. (a) Prove that every subset of a finite set is finite.
 - (b) If areal-valued function f is defined and continuous on a closed and bounded set F of real numbers, then show that it is uniformly continuous on F.
- 2. (a) Prove that the interval (a, ∞) is measurable.
 - (b) Let $\langle E_i \rangle$ be a sequence of measurable sets, then prove that $m(\bigcup E_i) \leq \sum mE_i$ and if E_i are pair wise disjoint, then prove that $m(\bigcup E_i) = \sum mE_i$.
- 3. (a) State and prove Lusin's theorem.
 - (b) Let D and E be measurable sets and f a function with domain $D \cup E$, then show that f is measurable if and only if its restrictions to D and E are measurable.
- 4. (a) Let f be bounded function defined on [a,b]. If f is Riemann integrable on [a,b], then show that it is measurable and

$$R\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx.$$

- (b) State and prove Momotone Convergence theorem.
- 5. (a) Let f be integrable over E. Then show that, for given $\epsilon > 0$, there is a simple function φ such that $\int_E |f \varphi| < \epsilon$.
 - (b) Show that if $\langle f_n \rangle$ is a sequence that converges to f in measure, then each subsequence $\langle f_{nk} \rangle$ converges to f in measure.

- 6. (a) If f is continuous on [a,b] and one of its derivatives (say D^+) is everywhere nonnegative on (a,b), then show that f is non-decreasing on [a,b]; i.e $f(x) \le f(y)$ for $x \le y$.
 - (b) If f be integrable function on [a,b] and suppose that $F(x) = F(a) + \int_a^x f(t) dt$, then prove that F'(x) = f(x) for almost all x in [a,b].
- 7. (a) State and prove Holder inequality.
 - (b) Given $f \in L^p$, $1 \le p < \infty$ and $\varepsilon > 0$, then prove that there is a step function φ and continuous function ψ such that $\|f \varphi\|_p < \varepsilon$ and $\|f \psi\|_p < \varepsilon$.
- 8. (a) If $E_i \in \mathfrak{B}$, then prove that $\mu\left(\bigcap_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} \mu E_i$.
 - (b) Suppose that to each α in a dense set D of real numbers there is assigned a set $B_{\alpha} \in \mathfrak{B}$ such that $\mu(B_{\alpha} \sim B_{\beta}) = 0$ for $\alpha < \beta$. The prove that there is measurable function f on X such that $f \leq \alpha$ a.e on B_{α} and $f \geq \alpha$ a.e. on $X \sim B_{\alpha}$.
- 9. State and prove Hahn Decomposition theorem.
- 10. State and prove Caratheodory theorem.

2

(DM 23)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019.

Second Year

Mathematics

ANALYTICAL NUMBER THEORY AND GRAPH THEORY

Time: Three hours Maximum: 70 marks

Answer any FIVE of the following questions, selecting at least two questions from each section.

All questions carry equal marks.

- 1. (a) For all $x \ge 1$, prove that $\sum_{n \le x} \sigma_1(n) = \frac{1}{2} \zeta(2) x^2 + O(x \log x)$ Prove that $\sum_{n \le x} \sigma_{\alpha}(n) = \frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1} + O(x^{\alpha})$, where $\beta = \max\{1, \alpha\}$
 - (b) State and prove Euler's summation formula.
- 2. (a) For all x > 2, Prove that $\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x + o(x)$ where the sum is extended over all primes $\le x$.
 - (b) State and prove Legendre's identity.
- 3. (a) State and prove Shapiro's Tauberian theorem.
 - (b) For a $x \ge 2$, Prove that $v(=\pi(x)\log x \int_2^x \frac{\pi(t)}{t} dt$ and $\pi(x) = \frac{v(x)}{\log x} + \int_2^x \frac{v(t)}{t \log^2 t} dt$.
- 4. (a) Prove that the prime number theorem implies $\lim_{n \to \infty} \frac{M(x)}{x} = 0$
 - (b) State and prove Selbergs asymptotic formula.
- 5. (a) Prove that, In a connected graph G with exactly 2k odd vertices, there exist k edge-disjoint subgraphs such that they together contain all edges of G and that each is a unicursal graph.
 - (b) Prove that, a complete graph with n vertices there are (n-1)/2 edge-disjoint Hamiltonian circuits ,if n is an odd number ≥ 3 .

SECTION - B

- 6. (a) Explain Traveling-Salesman problem.
 - (b) Prove that, an Euler graph G is arbitrary traceable from vertex y in G if and only if every circuit in G contains v.
- 7. (a) Prove that, In any tree(with two or more vertices), there are at least two pendent vertices.
 - (b) Prove that, every connected graph has at least one spanning tree.
- 8. (a) Prove that, a vertex v in a connected graph G is a cut-vertex if and only if there exist two vertices xx and y in G such that every path between x and y passes through v.
 - (b) Prove that, the vertex connectivity of any graph G can never exceeds the edge connectivity of G.
- 9. (a) Prove that, any simple planar graph can be embedded in a plane such that every edge is drawn as a straight line segment.
 - (b) Prove that , a connected graph with n vertices and e edges has e n + 2 regions.
- 10. (a) Prove that ,the set consisting of all the cut-sets and the edge-disjoint union of cut-sets in a graph G is an abelian group under the ring sum operation.
 - (b) Explain basis vectors of a graph.

(DM 24)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019.

Second Year

Mathematics

RINGS AND MODULES

Time: Three hours Maximum: 70 marks

Answer any FIVE of the following. All questions carry equal marks.

- 1. (a) Show that Boolean algebra becomes a completed distributive lattice by defining $a \lor b = (a' \land b')$, 1 = 0'.
 - (b) Show that in any Boolean ring, we have the identities a+a=0,ab=ba.
- 2. (a) Prove that the endomorphisms of an abelian group form a ring if addition is defined in a natural way.
 - (b) If A, B and C are additive subgroups of R then prove that (AB)C = A(BC). Moreover

 $AB \subset C \Leftrightarrow C:B$

 $\Leftrightarrow B \subset A:C$.

- 3. (a) Prove that the central idempotents of a ring R form a Boolean algebra B(R).
 - (b) If *S* is a sub-ring of *R* and *K* is an ideal, show that $(S+K)/K \cong S/(S \cap K)$.
- 4. (a) Let R be commutative ring, prove that the following are equivalent
 - (i) R has unique prime ideal P.
 - (ii) R is local and R ad R = rad R.
 - (iii) non-units are zero-divisors.
 - (iv) R is primary and all non-units are zero-divisors.
 - (b) Show that the ring of $n \times n$ matrices over a field is a regularring.
- 5. (a) Prove the following statements concerning the commutative ring R are equivalent.
 - (i) Every irreducible fraction has domain R.

- (ii) For every f there exist an element $s \in R$ such that fd = sd for all $d \in D$, the domain of f.
- (iii) $Q(R) \cong R$ canonically.
- (b) Determine all prime and maximal ideals as well as both radicals of Z(n), the ring of integers modulo n.
- 6. (a) If A_R is an irreducible module, then its ring of endomorphisms $D = Hom_R(A,A)$ is a division ring.
 - (b) Show that a prime ring with a minimal right ideal is (right) primitive.
- 7. (a) Prove that, the radical is the largest ideal K such that, for all $r \in K$.
 - (b) If K and P are ideals such that $K \subset P \subset R$, show that P/K is prime if and only if P is prime.
- 8. (a) Prove that, a vector space is completely reducible.
 - (b) If R is right Artinian then, prove that Rad R = rad R.
- 9. (a) Prove that, every R-module is projective if and only if R is completely reducible.
 - (b) Prove that, M is projective if and only if every ephimorphism $\pi: B \to M$ is direct.
- 10. (a) Show that every R-module is injective if and only if R is completely reducible.
 - (b) Prove that, M is injective if and if only M has no proper essential extension.
