(DMSTT 01)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019.

First Year Statistics

PROBABILITY AND DISTRIBUTION THEORY

Time: Three hours Maximum: 70 marks

Answer any FIVE questions.

- 1. (a) Explain the continuity axiom of probability.
 - (b) State and prove Bold-Cantilli Lemma.
- 2. (a) State and prove inversion theorem.
 - (b) Explain distribution function and its properties.
- 3. (a) Explain the convergence of sequence of random variables.
 - (b) Explain about the types of convergence with interrelations.
- 4. (a) State and prove Levy and Lindeberg form of central limit theorem.
 - (b) Explain weak laws of large numbers.

5.	(a)	What is discrete distribution? Explain its characteristics.
	(b)	What is m.g.f.? Explain its properties.

- 6. (a) Explain the interrelations of multinomial.
 - (b) What is Compound Poisson? Explain
- 7. (a) Explain the interrelations of Weibull Distribution.
 - (b) Define Probability Generating Function? Explain.
- 8. (a) Discuss about the logistic distribution. Also find its mean and variance.
 - (b) Derive m.g.f. of Laplace Distribution.
- 9. (a) Explain p.d.f. of a single order.
 - (b) What is Order Statistics? Obtain its distribution.
- 10. (a) Derive the joint p.d.f. of $\left|X_{(1)},X_{(2)},...X_{(n)}\right|$.
 - (b) Explain sampling distribution of non-central t.

(DMSTT 02)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019.

First Year

Statistics

STATISTICAL INTERFACE

Time: Three hours Maximum: 70 marks

Answer any FIVE questions.

- 1. (a) Define a minimum variance unbiased estimator. Show that sample variance is an unbiased estimator for the population variance.
 - (b) State and prove Factorization Theorem.
- 2. (a) State and prove Blackwell Theorem.
 - (b) Explain the terms:
 - (i) Consistency and
 - (ii) CAN estimator.(a) Explain sufficiency. Consider the rectangular distribution with p.d.f. $f_0(x) = 1$, $\theta \frac{1}{2} < \theta < \theta + \frac{1}{2}$, where $\theta \in (-\infty, \infty)$. Obtain the sufficient statistics for θ .

- (b) What is interval estimation? Explain with an example.
- 3. (a) Obtain confidence limits for the parameter μ in $N(\mu, 1)$ with confidence coefficient $(1-\alpha)$.
 - (b) Discuss about the interval of estimation.
- 4. (a) Explain non-randomised and randomised lists.
 - (b) Explain the concept of monotone likelyhood ratio.
- 5. (a) Consider n Bernoulli trials with probability of success P for each trial. Derive the likelyhood ratio test for $H_0: P = P_0$ against $H_1: P > P_0$ and $H_1: P < P_0$. Then show that they are identical with UMP tests.
 - (b) Explain the relationship between testing and interval estimation.
- 6. (a) Explain the procedure of Mason-Whitney Test.
 - (b) Explain about the Wilcoxon signed rank.
- 7. (a) Explain the median test is differentiate in testing two means. Also write procedure of medial list.
 - (b) Explain the Hann-Whitney Test.
- 8. (a) Explain SPR test and properties.
 - (b) Explain Wald's Test and its OC and ASN function.

- 9. (a) Let X be a random variable having the normal distribution $N(\mu,\theta)$. Where μ is known. Determine the SPR test for testing $H_0:\theta=\theta_0$ against $H_1:\theta=\theta_1$ $(\theta_1>\theta_2)$. Obtain the approximation for its OC and ASN functions.
 - (b) What is OC and ASN functions? Explain.

(DMSTT 03)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019. First Year Statistics

SAMPLING THEORY

Time: Three hours Maximum: 70 marks

Answer any FIVE questions.

- 1. (a) What is sample survey? In what respects is it superior to a census survey?
 - (b) What are sampling and non-sampling errors faced by the researcher? Explain.
- 2. (a) What are the main steps involved in a sample survey? Explain.
 - (b) Explain about the role of CSO.
- 3. (a) What is a simple random sample? Mention the various methods of drawing a random sample.
 - (b) How do you estimate population mean and proportion in SRS without replacement?
- 4. (a) Explain about the stratified sampling with examples.
 - (b) How do you determine sample by Neyman Allocation Method?

- 5. (a) Explain the concept of systematic sampling in detail.
 - (b) Discuss about the cluster sampling with equal cluster sizes.
- 6. (a) How do you estimate mean and variance with systematic sampling.
 - (b) What is optimum cluster size? Explain.
- 7. (a) Explain the PPS sampling with replacement.
 - (b) Explain the concept circular systematic sampling with examples.
- 8. (a) Discuss about the estimation of population mean, its variance and estimation of variance.
 - (b) Explain two examples where we can use multi-stage sampling.
- 9. (a) Discuss about the ratio estimation with examples.
 - (b) What are the biases of ratio-estimator? Explain.
- 10. (a) Explain the conditions for optimum ratio estimate.
 - (b) Explain the concept of regression estimates in stratified sampling.

(DMSTT 04)

M.Sc. DEGREE EXAMINATION, DECEMBER 2019.

First Year Statistics

DESIGN OF EXPERIMENTS

Time: Three hours

Maximum: 70 marks

Answer any FIVE questions.

- 1. (a) Prove that is λ is an eigen value of an orthogonal matrix, then $\frac{1}{\lambda}$ is also its eigen value.
 - (b) State and prove Cayley-Hamilton Theorem.
- 2. (a) Derive the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$.
 - (b) Explain Cochran's Theorem of quadratic form.
- 3. Obtain BLUE of the parameters in two-variable linear model. Also explain ANOVA for two-way classification.
- 4. (a) State and prove Atken's Theorem.

- (b) Explain generalised linear models.
- 5. (a) Explain one-way classification of ANOVA with an example.
 - (b) Explain about the random and mixed effect models.
- 6. (a) What is meant by two-way, three-way classification? Explain analysis of covariance of two-way classification.
 - (b) What are the objectives of ANOVA? Explain its practical applications.
- 7. (a) Explain the method of estimating several missings plots in LSD.
 - (b) What is meant by a RBD? Explain.
- 8. (a) What is meant by mutually orthogonal Latin squares? Explain its procedure.
 - (b) Explain the analysis of split plot design.
- 9. (a) Describe the analysis of factorial experiment involving three factors at three levels.
 - (b) Describe in detail about the analysis of complete and partial confounding in 3^2 factorial design.
- 10. (a) Define BIBD. Derive its parametric relations and point out different types of BIBD.
 - (b) Explain the analysis of 2^3 factorial experiment.