M.Sc. DEGREE EXAMINATION, NOVEMBER 2021. Second Year Statistics STATISTICAL QUALITY CONTROL

Time: Three hours

Maximum: 70 marks

Answer any FIVE questions. All questions carries equal marks.

- 1. (a) Explain Shewart control chart for individual measurements in detail.
 - (b) What is a control chart? Explain its uses in economics.
- 2. (a) Discuss the economic model of \overline{X} chart.
 - (b) Explain OC and ARL curves for \overline{X} -chart. Explain their usage.
- 3. (a) What is control charts for attributes? Explain.
 - (b) Calculate the control limits for the fraction defectives of a production line, where from 28 lots of 200 items each gave an average fraction defective of 0.04. The producer's risk is 0.03.
- 4. (a) Explain in detail about on tolerance limits and specification limits.
 - (b) Write the procedure of C-chart with fixed and varying samples sizes.
- 5. (a) Explain CUSUM chart. How do you improve CUSUM responsiveness for large shifts? What are the disadvantages of V-mask procedure?
 - (b) Discuss the analysis of means for variable data for two factor analysis.
- 6. (a) Explain in detail about multivariate quality for control charts.
 - (b) Discuss the ANOM for \overline{X} -chart and P-chart.

- 7. (a) Explain the method of sequential sampling plans for attributes.
 - (b) Explain the concepts of
 - (i) Producer's risk
 - (ii) Consumer's risk with examples.
- 8. (a) Differentiate between single sampling and double sampling plan. Also derive OC and ASN functions for single sampling plan.
 - (b) Discuss about the procedure of MILSTE 105E in detail.
- 9. (a) What is 6σ concept? Explain its uses. Also write the principles of total quality management.
 - (b) Explain the procedure of chain sampling.
- 10. (a) Explain the approaches of variable sampling.
 - (b) Explain the role of CSP-2 and CSP-3.

M.Sc. DEGREE EXAMINATION, NOVEMBER 2021.

Second Year Statistics

OPERATIONS RESEARCH

Time: Three hours

Maximum: 70 marks

Answer any FIVE questions. All question carries equal marks.

- 1. (a) Define a general LPP. Prove that it LPP has a feasible solution, then it also has a basic feasible solution.
 - (b) What an artificial variables? Why do we need them? Explain the Big-M method of solving on LPP.
- 2. (a) What is meant by dual problem? Show that dual of a dual is primal.
 - (b) Determine the dual and solve the following LPP

Minimize $z = 2x_1 + 9x_2 + x_3$

Subject to the conditions $x_1 - 2x_2 \ge 2$

$$x_1 + 2x_2 = 8$$

$$x_1 - x_2 \le 10$$
,

$$x_1, x_2 \ge 0$$

- 3. (a) Discuss the replacement procedure for items that deteriorate with times.
 - (b) Explain the problem of purchase inventory. Derive the optimum order quantity with one price break.
- 4. (a) A contractor has to supply 10,000 bearings per day to manufactures. He find that, when he starts a production run, he can produce 25,000 bearings per day. The cost of holding a bearing in stock for one year is 20 paise, and set-up cost of production run is Rs.180.00. How frequently should production run be made.
 - (b) Define the terms safety stock and EOQ with the help of ideal inventory model.

- 5. (a) Explain the maximum principle of game theory.
 - (b) Solve the following game by dominance method

Player B

- 6. (a) Explain the difference between pure strategy and mixed strategy.
 - (b) Solve the following 2×4 game for multiple solutions by graphical method.

A's payoff

B's strategies

- 7. (a) Explain the terminologies of queueing system.
 - (b) Explain the following
 - (i) Service discipline
 - (ii) Service distribution
 - (iii) Service channel
- 8. (a) Explain about various assumptions made in single-channel queueing theory.
 - (b) The man arrived rate to a service center in 3 per hour, the mean service time is found to be 10 min per service, assuming Poisson arrival and exponential service time, find
 - (i) Probability of two units in the system
 - (ii) Expected no. of units in the queue.
 - (iii) Expected time in minutes that customer has to spend in the system.

- 9. (a) What is the difference between PERT and CPM.
 - (b) Consider the following data for the activities of a project.

Activity: A B C D E F
Predecessor: - A A B,C - E
Duration (in days) 2 3 4 6 2 8

Draw the network and find critical path and project duration.

10. Following an the activity of a project

Activity	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G	Н	I
Proceeding	-	-	A	A	\mathbf{C}	D	В	E,F	G
a	4	1	6	2	5	3	3	1	4
m	7	5	12	5	11	6	9	4	19
b	16	15	30	8	17	15	27	7	28

- (a) Draw the network diagram
- (b) Find out initial path and project duration
- (c) If project manager wishes to be 99% sure that the project is completed on 30th March, 2017, When should be start the project work?

M.Sc. DEGREE EXAMINATION, NOVEMBER 2021.

Second Year

Statistics

ECONOMETRICS

Time: Three hours

Maximum: 70 marks

Answer any FIVE questions.

All questions carry equal marks.

- 1. (a) Distinguish between linear and non-linear regression models.
 - (b) Obtain the least square estimator of β in the simple linear model Y = XB + E and show that the least square estimator is BLUE.
- 2. (a) Develop a test statistic for testing the significance of the slope parameter.
 - (b) Explain the test procedure to test the function form of a regression model.
- 3. (a) State and prove Gauss-Markov theorem.
 - (b) Explain about OLS estimation.
- 4. (a) What is multiple correlation co-efficient (R)? Explain its role in regression model.
 - (b) Obtain the least squares estimators of the parameters in the two-variable linear model.
- 5. (a) Explain the role of dummy variables in regression model.
 - (b) Develop a test procedure for testing the general linear hypothesis.
- 6. (a) Explain MWD test. What are dummy variables? Explain their use.
 - (b) Explain the method of estimation subject to linear restrictions in the GLM.

- 7. (a) What is heteroscedasticity? What its sources? What are its consequences? Explain Goldfield-Quandt test.
 - (b) What are the assumptions of generalized least square method?
- 8. (a) What is multicollinearity? State different solutions for multicollinearity.
 - (b) What the sources of multicollinearity? What are its consequences? Explain principle component regression method.
- 9. (a) What is auto-correlation? What are its consequences? Explain the two tests for its detection.
 - (b) Explain about PROBIT model. How do you estimate the model?
- 10. (a) Write the structure of linear probability model. Explain its features.

(b) Explain auto correlation. Explain Durbin-Watson test.

M.Sc. DEGREE EXAMINATION, NOVEMBER 2021.

Second Year

Statistics

MULTIVARIATE ANALYSIS

Time: Three hours Maximum: 70 marks

Answer any FIVE questions.

All questions carry equal marks.

- 1. (a) Prove that the marginal distributions and conditional distributions derived from a p-variate normal distribution are also normal.
 - (b) Let X be a p-variate normal random vector. State and prove a necessary and sufficient condition for one subset of the random variables and the subset consisting of the remaining variables to be independent.
- 2. (a) Obtain the ML estimates of the mean vector and the covariance matrix in a p-variate normal.
 - (b) Obtain the distributions of a sample mean and sample co-variance matrix in a p-variate model.
- 3. (a) Derive the null distribution of Hotelling T^2 statistic.
 - (b) Discuss the statistical analysis of MANOVA for one-way classification.
- 4. (a) Evaluate T^2 , for testing $H_0: \mu = \begin{bmatrix} 3,9 \end{bmatrix}$ using the data $X = \begin{bmatrix} 12 & 8 & 6 & 8 \\ 12 & 9 & 9 & 10 \end{bmatrix}$.
 - (b) Develop a test statistic for testing the hypothesis that the mean vector is a given vector. Obtain the confidence region for the mean vector.
- 5. (a) Discuss the procedure for obtaining the first principal component.
 - (b) What is factor analysis? Explain the procedure of factor analysis.

- 6. (a) Define first K principal components. Explain the method of computing principal components from a given sample variance covariance matrix.
 - (b) What is the purpose of factor rotation? Explain orthogonal factor rotation and oblique factor rotation.
- 7. (a) Explain the problem of classification into one of the several known multivariate normal populations and obtain the linear discriminant functions.
 - (b) What is discriminant analysis? Explain how it is different from factor analysis.
- 8. (a) Discuss the Fisher's method for classification into one of several problems.
 - (b) Explain about the computation of linear discrement function.
- 9. (a) Explain the hierarchical clustering methods and their merits and demerits.
 - (b) Explain about the Non-hierarchical clustering methods.
- 10. (a) Discuss about the similarity measures.
 - (b) What is cluster analysis? Explain its procedure.