DM01

M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019 (First Year) MATHEMATICS

Algebra

Time : 3 Hours

Maximum Marks: 70

Answer any Five of the following questions. All Questions carry equal marks.

- **Q1)** a) If ϕ is a homomorphism of G into \overline{G} with kernel **K**, then prove that **K** is a normal sub group of G.
 - b) If G is abelian or order O(G) and $P^{\alpha}/O(G)$, $P^{\alpha+1}O(G)$, then prove that there is a unique subgroup of G of order P^{α} .
- **Q2)** a) If G is a group, then show that A (G), the set of automorphisms of G, s also a group.
 - b) State and prove Cayley's theorem.
- **Q3)** a) If p is prime number and $p^{\alpha}/O(G)$, then prove that G has a subgroup of order p^{α} .
 - b) Let G be a group and suppose that G is the internal direct product of $N_1, ..., N_n$. Let $T = N_1 ... N_n$. Then prove that G and T are isomorphic.
- Q4) a) Prove that a finite integral domain is a field.
 - b) If ϕ is a homomorphism of R into R', then prove that (1) ϕ (0) = 0 (2) ϕ (-a) = $-\phi$ (a) for every $a \in \mathbb{R}$.
- **Q5)** a) If R is unique factorization domain, then show that R[x] is also unique factorization domain.
 - b) If R is an integral domain with unit element, prove that any unit in R[x] must already be a unit in R.

- **Q6)** a) Prove that the element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.
 - b) If $a \in K$ is a algebraic of degree *n* over F, then prove that [F(a) : F] = n.
- **Q7)** a) Prove that if α, β are constructible, then so are $\alpha \pm \beta \alpha \beta$ and α / β (when $\beta \neq 0$) b) Prove that a circle in Fhas an equation of the form $x^2 + y^2 + ax + by + c = 0$, with *a*, *b*, *c* in F.
- **Q8)** a) Show that the polynomial $p(x) = x^3 3x 3$ over Q are irreducible and have exactly two non-real roots.
 - b) In S_5 , show that (1 2) and (1 2 3 4 5) generate S_5 .
- **Q9)** a) Show that the partially ordered set of subgroups of a cyclic group of prime power is a chain.
 - b) Show that any complete Lattice has a zero and an element.
- **Q10)** a) Prove that the following two types of abstract systems are equivalent.
 - (1) Boolean algebra
 - (2) Boolean ring with identity
 - b) Prove that any ring for which there exist a prime p such that pa = 0, $a^p = a$ for every a in the ring is commutative.

M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019 (First Year) MATHEMATICS Analysis

Time : 3 Hours

Maximum Marks: 70

Answer any Five of the following questions. All Questions carry equal marks.

- *Q1*) a) Prove that every infinite subset of a countable set A is countable.
 - **b)** Let $\{E_n\}$, n = 1,2,3, ..., be a sequence of countable sets, and put, then prove that

$$S = \bigcup_{n=1}^{\infty} E_n$$
, is countable.

- **Q2)** a) Prove that every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .
 - **b)** Prove that every *k cell* is compact.
- **Q3)** a) The sub sequential limits of a sequence $\{p_n\}$ in a metric space X form a closed subset of X.
 - **b)** Suppose $\{s_n\}$ is monotonic. Then prove that $\{s_n\}$ converges if and only if it is bounded.
- Q4) a) If f is continues mapping of a compact metric space X into R^k , then prove that f(X) is closed and bounded.
 - b) If f is continuous mapping of a compact metric space X into Y. Then f is uniformly continuous on X.

Q5) a) If
$$\gamma'$$
 is continuous on $[a, b]$, then prove that γ' is rectifiable, and $\Lambda(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$.

- **b)** If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove that $f \notin \mathcal{R}$ on [a, b] for any a < b.
- **Q6)** a) Prove that $f^{\in]}\mathcal{R}$ on [a, b] if and only if for every $\mathcal{E} > 0$ there exist a partition P such that $U(P,f,\alpha) L(Pf,\alpha) < \varepsilon$.

b) If P^{*} is a refinement of P, then prove that $L(p, f, \alpha) \le L(P^*, f, \alpha)$.

DM02

- a) Prove that the sequence of function {f_n} defined on E, converges uniformly on E if and if only for every ε>0 there exist an integer N such that m ≥ N, n ≥ N, x ∈ E implies |f_n(x) f_m(x)| ≤ ε.
- b) Suppose {f_n} is a sequence of functions defined on E, and suppose |f_n(x)|≤M_n (x∈E, n=1,2,3...) then prove that ∑f_n converges uniformly on E if ∑M_n converges.

Q8)

- a) If K is a compact metric space, if f_n ∈ C (k) for n=1,2,3,... and if {f_n} is pointwist bounded and equicontinuous on K, then prove that (1) {f_n} is uniformly bounded on K(2) {f_n} is contains a uniformly convergent subsequence.
- b) If K is a compact metric space, if f_n ∈ C(k) for n = 1,2,3,... and if {f_n} converges uniformly on K, then prove that {f_n} is equicontinuous on K.

Q7)

- a) If f is measurable, then prove that |f| is measurable.
- b) Let f and g are measurable real-valued functions defined on X, let F be real and continuous on R², and put h(x) = F(f(x), g(x)), (x∈X) then prove that h is measurable.

Q10)

- a) If $f \in \mathcal{L}(\mu)$ on E, then prove that $|f| \in \mathcal{L}(\mu)$ on E and $\left| \int_{\mathbb{Z}} f d\mu \right| \leq \int_{\mathbb{Z}} |f| d\mu$.
- **b)** Suppose that $f = f_1 + f_2$, where $f_i \in \mathcal{L}$ (μ) on E(i = 1,2,3....), then prove that $f \in \mathcal{L}$ (μ) and

$$\int_E f d\mu = \int_E f_1 d\mu + = \int_E f_2 d\mu.$$

Q9)

M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019

(First Year)

MATHEMATICS

Complex Analysis and Special Functions and Partial Differential Equations

Time : 3 Hours

Maximum Marks: 70

Answer any Five of the following questions, selecting at least two questions from each section. All questions carry equal marks.

SECTION - A

Q1)

a) Prove that

$$(1-2xz+z^2)^{\frac{1}{2}} = \sum_{n=0}^{\infty} z^n p_n(x), |x| \le 1, |z| < 1.$$

b) If
$$u_n = \int_{-1}^{1} x^{-1} p_n(x) p_{n-1}(x) dx$$
, then show that $nu_n + (n-1)u_{n-1} = 2$, hence evaluate u_n .

Q2)

a) Show that

i)
$$\int_{0}^{x} x^{-n} J_{n+1}(x) dx = \frac{1}{2^{n} \Gamma(n+1)}, n > 1.$$

ii)
$$\int_{0}^{\infty} x^{-n} J_{n+1}(x) dx = \frac{1}{2^{n} \Gamma(n+1)}, n > -\frac{1}{2}.$$

b) Show that

i)
$$\int_{0}^{x} x^{3} J_{0}(x) dx = x^{3} J_{1}(x) - 2x^{2} J_{2}(x)$$

ii)
$$\int_{0}^{1} x^{3} J_{0}(x) dx = 2J_{0}(1) - 3J_{1}(1)$$

Q3) a) Solve
$$(yz + 2x)dx + (zx - 2z)dy + (xy - 2y)dz = 0$$
.
b) Solve
 $z(y+z)dx + z(t-x)dy + y(x-t)dz + y(y+z)dt = 0$.

Q4) a) Solve
$$(x^2 - y^2 - yz)p + (x^2 - y^2 - zx)q = z(x - y)$$
.
b) $(D^2 + 2DD' + D'^2)z = 2\cos y - x\sin y$.

Q5) a) Solve
$$(D+D'-1)(D+2D'-3)z = 4+3x+6y$$
.

b) Solve $(r-t)xy - s(x^2 - y^2) = qx - py$ by Monge's method.

SECTION - B

Q6)

- a) Prove that ||z|-|w||≤ |z-w| and give necessary and sufficient conditions for equality.
- b) Let $Z = \operatorname{cis} \frac{2\pi}{n}$ for an integer $n \ge 2$. Show that $1 + z + \dots + z^{n-1} = 0$.

Q7)

- a) If $\sum_{n=0}^{\infty} a_n (z-a)^n$ is a given power series with radius of convergence R, then prove that $R = lim |a_n/a_{n+1}|$ if this exist.
- b) Let G be either the whole plane C or some open disk. If $u: G \rightarrow R$ is a harmonic function, then show that u harmonic conjugate.
- Q8) a) State and prove Cauchy's integral formula in second version.

b) Evaluate
$$\int_{\gamma} \frac{dz}{z^2 + 1}$$
 where $\gamma(\theta) = 2 |\cos 2\theta| e^{i\theta}$ for $0 \le \theta \le 2\pi$.

a) Show that
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

- b) State and prove general version of Rouche's theorem for curves other than circle in G.
- *Q10)* a) State and prove Maximum Modulus theorem.

b) Evaluate
$$\int_{0}^{\infty} \frac{x^2 dx}{x^4 + x^2 + 1}$$
.

Total No. of Questions : 10]

DM04

M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019

(First Year)

MATHEMATICS

Theory of Ordinary Differential Equations

Time : 3 Hours

Maximum Marks: 70

Answer any Five of the following questions. All questions carry equal marks.

Q1)

- a) State and prove existence theorem.
- b) Let φ₁,...φ_n be n solutions of L(y) = 0 on an interval I, and let x₀ be any point in I. Then prove

that
$$W(\phi_1, \dots, \phi_n)(x) = \left[\exp\left[-\int_{x_0}^x a_1(t) dt \right] \right]$$

 $W(\phi_1, \dots, \phi_{1n})(x)$

Q2)

- a) Verify the function φ₁satisfies the equation x² y" -7 xy' + 15xy = 0, φ₁(x) = x², (x > 0) and find a second independent solution.
- b) State and prove existence theorem for Analytic coefficients.

Q3)

- a) Find all real valued solutions of $y' = \frac{e^{x-y}}{1+e^x}$.
- b) Let M, N be two real valued functions which has continuous first partial derivatives on some rectangle R : $|x-x_0| \le a, |y-y_0| \le b$. Then show that M(x,y) + N(x,y) y' = 0 is exact in R if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

a) Show that a function φ is a solution of the initial value problem y' = f(x,y), y(x₀) = y₀ on I if and only if it is a solution of the integral equation

$$\mathbf{y} = \mathbf{y}_0 + \int_{x_0}^{x} f(t, y) dt$$

b) Find the first four successive approximations $\phi_0, \phi_1, \phi_2, \phi_3$ for $y' = x^2 + y^2$, y(0) = 0.

Q5)

- a) Find the solution φ(x) of y'' = 1+(y')² which satisfies φ(0) = 0, φ'(0) = 0.
 - b) Suppose that f is a continuous function on an interval $|x-x_0| \le a$. Show that the solution φ of the initial value problem y'' = f(x), $y(x_0) = \alpha$, $y'(x_0) = \beta$ can be written as $\varphi(x) = \alpha + \beta (x - x_0) + \int_{x_0}^{x} |x - t| f(t) dt$.

Q6)

- a) State and prove local existence theorem.
- b) Consider system where $y'_1 = ay_1 + by_2$, $y'_2 = -by_1 + ay_2 a$, b are real constants,
 - (1) If $\phi = (\phi_1, \phi_2)$ is any solution with values in R₂, show that $\|\phi(x)\| = \|\phi(0)\| e^{\alpha x}$, where $\|\phi(x)\| = [\phi_1^2(x) + \phi_1^2(x)]^{\frac{1}{2}}$.(2) Verify that the solution satisfies $\phi(0) = (1,0)$ is given by

$$\phi(x) = e^{\alpha x} \left(\cos bx, -\sin bx \right).$$

Q4)

- a) By reduction to linear equation solve the Riccati's equation $y' = -2y^2 5y 2$.
- b) Find the greens function of the boundary value problem y'' = -f(x), y(0) = 0, y(1) = 0.

Q8)

- a) Show that if z_1, z_2, z_3 are any four different solutions of the Riccati equation $y' + a(x)y + b(x)y^2 + c(x) = 0$, then show that $\frac{y - y_2}{y - y_1} = \frac{y_3 - y_1}{y_3 - y_2}$.
- b) Find the functions z(x), k(x), m(x) such that $z(x)[x^2y''-2xy'+2y] = \frac{d}{dx}(k(x)y'+m(x)y)$ and hence solve $x^2y'' - 2xy'+2y = 0, x > 0.$

Q9)

- a) State and prove strum seoaration theorem.
- b) Solve $x^2 y'' 2xy' + (2+x^2)y = 0, x > 0.$

Q10)

- a) State and prove Gronwall's inequality.
- b) Discuss the oscilation of Bessel equation x² y" - xy' + (x²-n²)y=0.

Q7)