M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019 (Second Year) MATHEMATICS Topology and Functional Analysis

Time : 3 Hours

Maximum Marks: 70

Answer any Five of the following questions. selecting at least two questions from each section. All questions carry equal marks.

SECTION – A

- Q1) a) Show that a subspace of a topological space is itself a topological space.
 - b) Show that a topological space X is metrizable there exist a homeomorphism of X onto a subspace of some metric space Y.
- **Q2)** a) State and prove Tychonoff's Theorem.
 - b) Prove that every sequentially compact metric space is totally bounded.
- **Q3)** a) State and Prove Ascoli's theorem.
 - b) Show that \mathbb{R}^{∞} is not locally compact.
- **Q4)** a) Prove that the product of any non-empty class of Hausdorff space is a Hausdorff space.
 - b) Prove that compact subspace of a Hausdorff space is closed.
- **Q5)** a) State and prove the Urysohn Imbedding theorem.
 - b) State and prove a generalization of Tietze's theorem which relates to functions whose values lie in \mathbb{R}^n

<u>SECTION – B</u>

DM21

- Define Banach Space and give some examples.
- b) Let N be a non-zero normed linear space, and prove that N is a Banach space ⇔ {x: ||x||=1} is complete.

Q7)

- a) State and prove the Hahn-Banach Theorem.
- b) If N is a normed linear space and x₀ is a non-zero vector in N, then there exist a functional f₀ in N^{*} such that f₀(x₀)= ||x₀|| and ||f₀||=1.
- **Q8)** a) Prove that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.
 - b) Define Hilbert Space and give some examples.
- **Q9)** a) State and prove Bessel's inequality.
 - b) Prove that a Hilbert space H is separable if and only if every orthonormal set in H is countable.
- **Q10)** a) If T is an operator on H for which $(T_{x,x}) = 0$ for all x, then prove that T = 0.
 - b) If T is an operator on H, then prove that the following conditions are all equivalent to each other.
 - i) $TT^* = I$.
 - ii) $(T_x, T_y) = (x, y)$ for all x and y.
 - iii) |Tx| = |x| for all x.

Q6)

M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019 (Second Year) MATHEMATICS Measure and Integration

Time : 3 Hours

Maximum Marks: 70

DM22

Answer any Five of the following questions. All questions carry equal marks.

- **Q1**) a) The union of a countable collection of countable sets is countable.
 - b) Show that every bounded infinite sequence has a subsequence that converges to a real number.

Q2)

a) Let $\{A_n\}$ be a countable collection of sets of real numbers, then prove that $m^*(\bigcup A_n) \leq \sum m^* A_n$.

- b) If f is measurable function and f = g a.e, then prove that g is measurable.
- Q3) a) State and prove Egoroff's theorem.
 - b) State and prove Lusin's theorem.

Q4)

a) Let φ and Ψ be simple functions which vanish outside a set of finite measure, then prove that $\int (a\varphi + b\Psi) = a \int \varphi + b \int \Psi$.

b) State and prove Fatou's Lemma.

- a) Show that if f is integrable over E, then so is |f|and $\left| \int_{f} f \right| \leq \int_{f} |f|$
- b) Let $\langle f_n \rangle$ be asequence of measurable functions that converges in measure to f. Then prove that, there is subsequence $\langle f_n \rangle$ that converges to f almost everywhere.

Q6)

- a) Let f be an increasing real-valued function on the interval [a,b]. Then prove that f is differentiable almost everywhere. The derivative f' is measurable, and $\int_{a}^{b} f'(x) dx \leq f(b) - f(a)$.
 - b) If f is integrable on [a, b], then show that the function F defined by $F(x) = \int_{a}^{x} f(t) dt$ is a continuous function of bounded variation on [a, b].

Q7)

- a) Prove the Minkowski Inequality for $1 \le p < \infty$.
- b) Given $f \in L^p$, $1 \le p < \infty$, and $\varepsilon > 0$, then prove that there is a bounded measurable function f_M with $|f_M| \le M$ and $||f - f_M|| < \varepsilon$.

- a) If $\mathbf{E}_i \in \mathfrak{A}$, $\mu \mathbf{E}_1 < \infty$ and $\mathbf{E}_i \supset \mathbf{E}_1$, then prove that $\mu \left(\bigcap_{i=1}^{\infty} \mathbf{E}_i \right) = \lim_{n \to \infty} \mu \mathbf{E}_n.$
- b) Suppose that to each α in a dense set D of real numbers there is assigned a set B_α∈ A such that B_α⊂B_β for α < β. The prove that there is unique measurable extended real valued function f on X such that f≤α on B_α and f≥α on X~B_α.
- **Q9)** State and prove Hahn Decomposition theorem.

Q10)

The class of \mathfrak{A} of μ^* - measurable sets is a σ -algebra. If $\overline{\mu}$ is μ^* restricted to \mathfrak{A} , then prove that $\overline{\mu}$ is complete measure on \mathfrak{A} .

Total No. of Questions : 10]

DM23

M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019 (Second Year) MATHEMATICS

Analytical Number Theory and Graph Theory

Time : 3 Hours

Maximum Marks: 70

Answer any Five of the following questions, selecting at least two questions from each section. All questions carry equal marks.

SECTION – A

Q1)

a) For all $x \ge 1$, Prove that $\sum_{n \le x} \sigma_1(n) = \frac{1}{2}\zeta'(2)x^2 + O(x \log x)$. Prove that $\sum_{n \le x} \sigma_n(n) = \frac{\zeta'(\alpha+1)}{\alpha+1}x^{\alpha+1} + O(x^{\alpha})$, where $\beta = \max\{1, \alpha\}$

b) State and prove Euler's summation formula.

Q2)

- a) For all $x \ge 1$, prove that $\left|\sum_{n \le x} \frac{\mu(n)}{n}\right| \le 1$ with equality holding only if x < 2.
- b) State and prove Legendre's identity.

Q3) a) State and prove Abel's identity.

b) For a
$$x \ge 2$$
, prove that $v(x) = \pi(x)\log x - \int_{2}^{x} \frac{\pi(t)}{t} dt$
and $\pi(x) = \frac{v(x)}{\log x} + \int_{2}^{x} \frac{v(t)}{t\log^{2} t} dt$.

a) Prove that the prime number theorem implies $\lim_{n \to \infty} \frac{M(x)}{x} = 0.$

$$Q4)$$
 $\lim_{n\to\infty}$

- b) State and prove Selberg's asymptotic formula.
- **Q5)** a) Prove that, a simple with *n* vertices and *k* components can have at most (n k) (n k + 1)/2 edges.
 - b) Prove that, a connected graph G is an Euler graph if and only if it can be decomposed into circuits.

<u>SECTION – B</u>

- *Q6*) a) Explain Konigsberg Bridge problem.
 - b) Prove that, an Euler graph G is arbitrary traceable from vertex v in G if and only if every circuit in G contains v.
- **Q7)** a) If in a graph G there is one and only one path between every pair of vertices, then G is a tree.
 - b) Prove that the distance between vertices of a connected graph is a metric.
- **Q8)** a) Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge-disjoint union of cut-sets.
 - b) Prove that every cut-set in a connected graph G must contain at least one branch of every spanning tree of G.
- *Q9*) a) Prove that Kuratowski's is second graph is non-planar.
 - b) Prove that, a connected graph with *n* vertices and *e* edges has e n + 2 regions.
- **Q10)** a) Prove that, the ring sum of two circuits in a graph G is either a circuit or an edgedisjoint union of circuits.
 - b) Explain about Modular arithmetic and Galois fields.

M.Sc. DEGREE EXAMINATION, JUNE/JULY - 2019

(Second Year)

MATHEMATICS

Rings and Modules

Time : 3 Hours

Maximum Marks: 70

Answer any Five of the following questions.

All questions carry equal marks.

Q1)

a)	The class of semi-lattices can be equationally defined as the class of all semi-groups (S, \wedge) , then prove that (S, \wedge) satisfying the commutative and idempotent laws.			
b)	Pro tur	Prove that a Boolean algebra $(S, 0', .)$ can be turned into a Boolean ring $(S, 0, 1, ., +, .)$ by defin- ing $1=0', -a = a, a + b = ab' \vee ba'$ where		
	ing			
	av	$a \vee b = (a' b')'.$		
	a) Prove that the sum $\sum_{i \in I} B_i$ of submodules of A_R is			
		 direct if and only if, for all i∈I, B_i ∩ ∑B_j = 0. b) Prove that the following statements are equivalent. 		
	b)			
		(1)	R is isomorphic to a finite direct of rings $R_i (i = 1, 2,, n)$	
		(2)	There exist central orthogonal	
			idempotents, $e_i \in \mathbb{R}$ such that $1 = \sum_{i=1}^{n} e_i$ and	
			$\mathbf{e}_i \mathbf{R} \cong \mathbf{R}_i \ . $	
		(3)	R is a finite direct sum of ideals $\mathbf{K}_i \cong \mathbf{R}_i$.	

Q3)

Q2)

- a) If B and C are sub-modules of a prove that (B+C)/B ≅ C/(B ∩ C).
- b) Prove that a module is Noetherian if and only if every sub-module is finitely generated.

- Q4) a) Prove that radical of a commutative ring R consists of all nilpotent elements of.
 - b) Prove the following statements concerning the Boolean ideal K are equivalant.
 - (1) K is maximal
 - (2) K is prime
 - (3) For every element s, either s∈K or s' ∈K but not both.
- Q5) a) Prove that every equivalent class of factions exactly one irreducible fraction, and this extends all fractions in the class.
 - b) If R is a Boolean ring then prove that Q(R) is a Boolean ring.
- **Q6)** a) Prove that, the ring R is prime if and only if there exist a faithful irreducible module A_{R} .
 - b) Show that a dense sub-ring of the ring of linear transformations of a vector space is primitive.
- (Q7) a) Show that, the prime radical of R is the set of all strongly nilpotent elements.
 - b) Prove that, the radical of R is the set of all rR such that 1-rs is right invertible for all $s \in R$.
- (Q8) a) Prove the following conditions concerning the module A are equivalent.
 - (1) A is completely reducible
 - (2) A has no proper large sub-module.
 - (3) L(A) is complemented.

b) If e² = e ∈ R and f² = f ∈ R, then eR ≅ f R if and only if there exist u,v ∈ R such that vu = e and uv = f.

- *Q9*) a) Prove that every free module is projective.
 - b) Prove that, M is projective if and only if every ephimorphism π: B→M is direct.

Q10)

- a) If M is the direct product of a family of modules {M_i/i∈I}, then prove that, M is injective if and only if each M_i is injective.
- b) Prove that, M is injective if and only if M has no proper essential extension.