
 PROGRAMMING WITH C & C++

B.A. / B.Com. SECOND YEAR

Semester – 3

Lesson Writers

Sri G. Venugopal Rao
 M.Sc., M.Phil.

Lecturer,
Dept. of Computer Science,
J.K.C. College, Guntur.

Smt. M. Sudha Rani
 MCA

Lecturer,
Dept. of Computer Science,
J.K.C. College, Guntur.

Sri J. Venkata Rao
 M. Sc.

Lecturer,
Dept. of Computer Science,
J.K.C. College, Guntur.

Smt. M. Nirupama Bhat
 MCA., M.Phil.
Lecturer,
Dept. of Computer Science,
J.K.C. College, Guntur.

Sri Y. Venkateswara Rao
 MCA

Lecturer,
Dept. of Computer Science,
J.K.C. College, Guntur.

Dr.Vasantha Rudramalla
 M.Tech.,Ph.D.
Faculty,
Dept. of Computer Science & Eng.
Acharya Nagarjuna University.

Editor

 Prof. I. Ramesh Babu , M.E., Ph.D.
 Dept. of Computer Science,

 Acharya Nagarjuna University.

Director

Dr. NAGARAJU BATTU
 MBA, MHRM, LLM, M.Sc.(Psy), M.A.(Soc), M.Ed., M.Phil., Ph.D.

Centre for Distance Education,
Acharya Nagarjuna University,

Nagarjuna Nagar 522 510, GUNTUR.

Ph : 0863 - 2346208, 2346222, 2346259 (Study Material)
Website : www.anucde.info

e-mail : anucdedirector@gmail.com

 B.A. / B.Com . SECOND YEAR : Semester - 3

PROGRAMMING WITH C & C++

 First Edition : 2023

 No. of Copies :

 © Acharya Nagarjuna University

 This book is exclusively prepared for the use of students of B.Com. programme,
Centre for Distance Education, Acharya Nagarjuna University and this book is meant for
limited circulation only.

Published by :
Dr. Nagaraju Battu
Director,
Centre for Distance Education,
Acharya Nagarjuna University.

Printed at :

FOREWORD

 Since its establishment in 1976, Acharya Nagarjuna University has been forging

ahead in the path of progress and dynamism, offering a variety of courses and research

contributions. I am extremely happy that by gaining a ‘A’ Grade from the NAAC in the year

2014, the Acharya Nagarjuna University is offering educational opportunities at the UG, PG

levels apart from research degrees to students from over 285 affiliated colleges spread over the

two districts of Guntur and Prakasam.

 The University has also started the Centre for Distance Education with the aim to

bring higher education within reach of all. The centre will be a great help to those who cannot

join in colleges, those who cannot afford the exorbitant fees as regular students, and even

housewives desirous of pursuing higher studies. With the goal of bringing education in the door

step of all such people. Acharya Nagarjuna University has started offering B.A, and B, Com

courses at the Degree level and M.A, M.Com., L.L.M., courses at the PG level from the

academic year 2021-22 on the basis of Semester system.

 To facilitate easier understanding by students studying through the distance mode,

these self-instruction materials have been prepared by eminent and experienced teachers. The

lessons have been drafted with great care and expertise in the stipulated time by these teachers.

Constructive ideas and scholarly suggestions are welcome from students and teachers invited

respectively. Such ideas will be incorporated for the greater efficacy of this distance mode of

education. For clarification of doubts and feedback, weekly classes and contact classes will be

arranged at the UG and PG levels respectively.

 It is aim that students getting higher education through the Centre for Distance

Education should improve their qualification, have better employment opportunities and in turn

facilitate the country’s progress. It is my fond desire that in the years to come, the Centre for

Distance Education will go from strength to strength in the form of new courses and by catering

to larger number of people. My congratulations to all the Directors, Coordinators, Editors and

Lesson -writers of the Centre who have helped in these endeavours.

Prof. P.Rajasekhar
 Vice –Chancellor,

Acharya Nagarjuna University

ACHARYA NAGARJUNA UNIVERSITY - GUNTUR

Structure of B.Com (Computer Applications) Programme under Revised CBCS

Semester-wise Syllabus under CBCS (w.e.f. 2020 – 21 Admitted Batch)

II – Year B.A. / B Com (CA); Semester – II

COURSE 3C: PROGRAMMING WITH C & C++ (with Practical Component)

Model Outcomes :

At the end of the course, the students is expected to DEMONSTRATE the following cognitive

abilities (thinking skill) and psychomotor skills.

A. Remembers and states in a systematic way (Knowledge)

1. Develop programming skills

2. Declaration of variables and constants use of operators and expressions

3. learn the syntax and semantics of programming language

4. Be familiar with programming environment of C and C++

5. Ability to work with textual information (characters and strings) & arrays

B. Explains (Understanding)

6. Understanding a functional hierarchical code organization

7. Understanding a concept of object thinking within the framework of functional
model

8. Write program on a computer, edit, compile, debug, correct, recompile and run it

C. Critically examines, using data and figures (Analysis and Evaluation)

9. Choose the right data representation formats based on the requirements of the
problem

10. Analyze how C++ improves C with object-oriented features

11. Evaluate comparisons and limitations of the various programming constructs
and choose correctone for the task in hand.

D. Working in ‘Outside Syllabus Area’ under a Co-curricular Activity(Creativity)

Planning of structure and content, writing, updating and modifying computer

programs for user solutions

E. Exploring C programming and Design C++ classes for code reuse (Practical
skills***)

SYLLABUS

COURSE 3C: PROGRAMMING WITH C & C++

Unit-I Introduction :

Introduction - Structure of C program – C character set, Tokens: Constants,

Variables, Keywords, Identifiers – C data types - C operators (arithmetic,

relational, logical, increment and decrement) - Standard I/O in C (scanf, printf) -

Conditional Control statements (if and Switch) Statements.

Unit-II Loops And Arrays :

Repetitive statements: While, Do While and For Loops - Use of Break and

Continue Statements –Arrays: Introduction – Types of arrays, one dimensional

arrays - Declaration of one dimensional arrays–Accessing array elements–Storing

values in an array –Two Dimensional Arrays Declaration of two dimensional

arrays – Accessing array elements– Storing values in 2-D arrays.

Unit- III Strings and Functions :

Strings: Definition, Declaration and Initialization of String Variables -

String Handling Functions – Functions : Defining Functions - Function Call –

passing parameters: Call By Value, Call By Reference.

Unit- IV Classes and Objects :

Introduction to OOP and its basic features - C++ program structure - Classes and

objects - Friend Functions- Static Functions –Constructor – Types of constructors

– Destructors – Operators.

Unit-V Inheritance :

Inheritance - Types of Inheritance -Types of derivation- Public – Private -

Protected Hierarchical Inheritance - Multilevel Inheritance – Multiple Inheritance -

Hybrid Inheritance.

References :

(1) Computer Fundamentals and Programming in C by Reema Thareja from

Oxford University Press

(2) Mastering C by K R Venugopal and Sudeep R Prasad, McGraw Hill

(3) Let Us C, Yashavant Kanetkar

(4) E. Balagurusamy "Object oriented programming with C++

(5) R.Ravichandran "Programming with C++"

(6) The C++ Programming Language Bjarne Stroustrup

Online Resources :

https://www.tutorialspoint.com/cprogramming/i

ndex.html https://www.learn-c.org/

https://www.programiz.com/c-programming

https://www.w3schools.in/c-tutorial/

https://www.cprogramming.com/tutorial/c-

tutorial.html

https://www.tutorialspoint.com/cplusplus/inde

x.html

https://www.programiz.com/cpp-

programminghttp://www.cplusplus.com/doc/tutorial/ https://www.learn-

cpp.org/

https://www.javatpoint.com/cpp-tutorial

ACHARYA NAGARJUNA UNIVERSITY-GUNTUR

Structure of B.Com (Computer Applications) Programme under Revised CBCS

Semester-wise Syllabus under CBCS (w.e.f. 2020-21 Admitted Batch)

II Year B.A. / B. Com. (CA); Semester- III

COURSE 3C: PROGRAMMING WITH C & C++ Practical Component

1. Write C programs for

a. Fibonacci Series

b. Prime number

c. Palindrome number

d. Armstrong number.

2. ‘C’ program for multiplication of two matrices

3. ‘C’ program to implement string functions

4. ‘C’ program to swap numbers

5. ‘C’ program to calculate factorial using recursion

6. ‘C++’ program to perform addition of two complex numbers using constructor

7. Write a program to find the largest of two given numbers in two different

classes using friend function

8. Program to add two matrices using dynamic constructor

9. Implement a class string containing the following functions :

a. Overload + operator to carry out the concatenation of strings.

b. Overload == operator to carry out the comparison of strings.

10. Program to implement inheritance.

RECOMMENDED CO-CURRICULAR ACTIVITIES :

(Co-curricular activities shall not promote copying from textbook or from others work and

shall encourage self/independent and group learning)

MEASURABLE

1. Assignments (in writing and doing forms on the aspects of syllabus content and

outside the syllabus content. Shall be individual and challenging)

2. Student seminars (on topics of the syllabus and related aspects (individual activity)

3. Quiz (on topics where the content can be compiled by smaller aspects and data

(Individuals or groups as teams)

4. Field studies (individual observations and recordings as per syllabus content and

related areas (Individual or team activity)

5. Study projects (by very small groups of students on selected local real-time

problems pertaining to syllabus or related areas. The individual participation and

contribution of students shall be ensured (team activity))

General

Group Discussion
Visit to Software Technology parks / industries

RECOMMENDED CONTINUOUS ASSESSMENT METHODS:

Some of the following suggested assessment methodologies could be adopted :

1. The oral and written examinations (Scheduled and surprise tests),

2. Closed-book and open-book tests,

3. Coding exercises,

4. Practical assignments and laboratory reports,

5. Observation of practical skills,

6. Individual and group project reports,

7. Efficient delivery using seminar presentations,

8. Viva voce interviews.

9. Computerized adaptive testing, literature surveys and evaluations,

10. Peers and self-assessment, outputs form individual and collaborative work.

MODEL QUESTION PAPER

B.A. / B.Com. DEGREE EXAMINATION.

Second Year – Third Semester

Part – II : Arts / Commerce

Paper III : PROGRAMMING WITH C AND C++

 Time: Three hours Max. Marks : 70

 SECTION A (5 x 4 = 20 Marks)

Answer any FIVE of the following questions.

1. Wrote the structure of C Program.

C Ηʭం ƯకȮ ęüɆణంъ üయంĒ.

2. Explain C data types.

C ǖę žì ϹȖɏ ъ ĤవĠంచంĒ.

3. Explain for loop with example.

ఫȜ қȖ ъ ఉóహరణǉ ĤవĠంచంĒ.

4. Explain accessing array elements with examples.

͚Ĕ җలâѓ ûŎɏȣ ŷయîęĆ ఉóహరణǉ ĤవĠంచంĒ.

5. Explain declaration and initialization of string variables.

ħɔంȄ ƐĠయэȞ మĠѐ ĒకɊƌషȕ ఇęĦయЋŹషȕ йĠంċ ĤవĠంచంĒ.

6. Write a short note on Functions.

ఫంɕȕɏ йĠంċ ఒక ċనɁ గమęకъ ˉయంĒ.

7. Explain friend function with an example in C++.

C++ ǖę ̬ంȎ ఫంɕъɁ ఒక ఉóహరణǉ ĤవĠంచంĒ.

8. Explain destructors in C++.

C++ ǖę ĒసɔకȸరɊъ ĤవĠంచంĒ.

9. Explain Public and private concepts in C++.

పĜɊȂ మĠѐ ЧƐȌ అంāలъ C++ ǖęĆ ĤవĠంచంĒ.

10. Explain about benefits of inheritance.

ĀరసతɌ ʛǓéలъ йĠంċ ĤవĠంచంĒ.

SECTION B (5 x 10 = 50 Marks)

Answer any FIVE of the following questions.

11. Explain operators in C.

 C ǖę ఆపƌటȜɏ ъ ĤవĠంచంĒ.

12. Explain if and switch statements with examples.

if మĠѐ switch statements ъ ఉóహరణǉ ĤవĠంచంĒ.

13. Explain array with types of arrays.

͚хల రâలǉ ͚Ĕęę ĤవĠంచంĒ.

14. Explain while and do while loops with examples.

while మĠѐ do while қȖ లъ ఉóహరణǉ ĤవĠంచంĒ.

15. Explain string handling functions.

 ħɔంȄ ĄɇంĒɊంȄ ఫంɕనɊъ ĤవĠంచంĒ.

16. Briefly explain call by value and call by reference with examples.

âȞ Ѕ Ɛқɇ మĠѐ âȞ Ѕ ĠఫŨȕɏ ъ зɊపȽంä ĤవĠంచంĒ ఉóహరణǉ.

17. Explain structure of C++ program with one example.

ఒక ఉóహరణǉ C++ Ηʭం ęüɆణяъ ĤవĠంచంĒ.

18. Explain constructor with different types.

ĤĤధ రâలǉ కంసɔకȸȜ ъ ĤవĠంచంĒ.

19. Explain inheritance with various types.

ĤĤధ రâల ĀరసñɌęɁ ĤవĠంచంĒ.

20. Write C++ program to implement multilevel inheritance.

 C++ Ηʭంǉ మņȸ ŪŬȞ ఇšɐĠŘȕɏ ъ అమѓ ŷయటం ˉయంĒ.

CONTENTS

Unit No. Lesson No. Title of the Lesson
Page No.

From To

Unit - 1

1 Structure of C Language 1.1 - 1.7

2 Tokens in C 2.1 - 2.8

3 Operators and Standard I/O Functions in C 3.1 - 3.7

4 Statements in C 4.1 - 4.11

Unit - 2

5 Loops in C 5.1 - 5.16

6 Arrays 6.1 - 6.16

Unit - 3

7 Strings 7.1 - 7.10

8 Functions 8.1 - 8.9

Unit - 4

9
Introduction to Object Oriented

Programming through C++
 9.1 - 9.13

10 Classes and Objects 10.1 - 10.8

11 Constructors, Destructors and Operators 11.1 - 11.23

Unit - 5

12 Inheritance 12.1 - 12.16

13 Hierarchical Inheritance 13.1 - 13.10

PRACTICAL
COMPONENT

LAB MANUAL L -1 - L -10

LESSON – 1

STRUCTURE OF C LANGAUGAE

AIMS AND OBJECTIVES :

The objectives of this lesson are

 To discuss the history and development of C program language levels.

 To be acquainted with the various elements (character set) of C language.

 To know the structure of the C program and some program characteristics of C

language.

STRUCTURE OF THE LESSON :

1.1. Introduction

1.1.1. Low Level Languages

1.1.2. Machine Language

1.1.3. Assembly Language

1.1.4. High-level Language

1.1.5. Assembler

1.1.6. Compiler

1.2. Structure of C Program

1.2.1. Integrity

1.2.2. Clarity

1.2.3. Simplicity

1.2.4. Efficiency

1.2.5. Modularity

1.2.6. Documentation section

1.2.7. Link section

1.2.8. Definition section

1.2.9. Global declaration section

1.3. C character set

1.4. Summary

1.5. Key words

1.6. Self Assessment Questions

1.7. Further Readings

 CENTRE FOR DISTANCE EDUCATION 1.2 ACHARYA NAGARJUNA UNIVERSITY

1.1. INTRODUCTION :

Computer will not understand any of the natural languages. So we need a language to
communicate with computer. There are programming languages specially developed so that
we could pass our data and instructions to the computer to do a specific job.

There are two types of programming languages. These are Low Level Languages and High-
Level Languages.

 Low level Languages

 High level languages

1.1.1. Low Level Languages :

The term low level means closeness to the way in which the machine can understand. Low-
level languages are further divided into Machine language and Assembly language.

1.1.2. Machine Language :

Machine Language is the only language that can be directly understood by the computer. It
does not need any translator program. We also call it machine code and it is written as strings
of 1's (one) and 0’s (zero). When this sequence of codes is fed to the computer, it recognizes
the codes and converts it into electrical signals. For example, a program instruction may look
like this :
 1011000111101

It is not easy to learn and write instructions in this form. Because of the complexity very few
people can write the programs in this language. It is considered to be the first-generation
language.

The only advantage is that program written in machine language run very fast because no
translation is required for the CPU.

1.1.3. Assembly Language :

A low-level programming language that is slightly user-friendlier than machine language.
The software, which translates a program written in assembly language to machine language,
is called an assembler. These are considered to be second-generation languages.

Advantages of assembly language are:

It is easier to understand and write programs, which are nearer to English language. It saves a
lot of time for the programmer, easier to correct errors and modify the program instructions
whenever necessary.

1.1.4. High-level Language :

These are third-generation languages or 3GLs. These are closer to so-called natural languages
(we talk). High-level languages are simple languages that use English and mathematical
symbols like +, -, %, / etc., for its program construction. Any program written in High-
level language has to be converted to machine language for the computer to understand.
Higher-level languages are problem-oriented languages because the instructions are suitable
for solving a particular problem. Choice of a particular high-level language depends on the

PROGRAMMING WITH C & C++ 1.3 STRUCTURE OF C LANGAUGAE

application/problem. Advantages of High-Level Languages are easy to learn and use because
that they are similar to the languages used by us in our day-to-day life.
Translator is a program, which play major role by converting source language to object
language. We have translators like assembler, compiler and interpreter.

1.1.5. Assembler :

Assembler is a translator or converter, which converts assembly language program
(Mnemonics or symbols) to machine understandable code called machine language (0’s and
1’s).

1.1.6. Compiler :

The programs written by the programmer in high-level language is called source program.
Compiler translates the source program to machine language; it is called the object code.
Compiler is a program translator like assembler but more sophisticated. It scans the entire
program first and then translates it into machine code.

Every high-level language has its own compiler. For example, FORTRAN compiler will not
compile source code written in COBOL language.

Interpreter :

An interpreter is another type of program translator used for translating higher-level language
into machine language. It takes one statement of high-level language, translates it into
machine language and immediately executes it. Translation and execution are carried out for
each statement.
It differs from compiler in the following aspects :
Compiler translates the entire source program into machine understandable form at a time
and generates an object code, which can be used on repeated execution of the program. With
interpreter the program needs to be retranslated every time you want the program to be
executed.

1.2. STRUCTURE OF C PROGRAM :

C is a general-purpose programming language. C instructions consist of terms that resemble
algebraic expressions, augmented by certain English keywords such as if, else, for, do and
while. C is characterized by the ability to write very concise source programs, due in part to
the large number of operations included within the language. C compilers are commonly
available for computers of all sizes. C programs are highly portable.

Assembly

Language
Assembler

Machine

Language

High-level
Language Compiler

Machine

Language

 CENTRE FOR DISTANCE EDUCATION 1.4 ACHARYA NAGARJUNA UNIVERSITY

C was originally developed in the 1970’s by Dennis Ritchie at Bell Telephone Laboratories
now AT & T Bell laboratories. It is an outgrowth of two earlier languages, called BCPL and
B, which were also developed at Bell Laboratories. It was written originally for programming
under an operating system called UNIX, which itself was later rewritten almost entirely in C.
The C language is often, described as a “middle-level” language. It permits programs to be
written in much the same style as that of most modern high-level languages.

Some important characteristics of C language are.

1.2.1 Integrity :

This refers to the accuracy of the calculations. The integrity of the calculations is an absolute
necessity in any computer program.

1.2.2. Clarity :

This refers to the overall readability of a program. If a program is clearly written, it should be
possible for another programmer to follow the programming logic.

1.2.3. Simplicity :

Keeping things as simple as possible usually enhances the clarity and accuracy of a program
consists with the overall program objectives.

1.2.4. Efficiency :

This is concerned with execution speed and efficient memory utilization.

1.2.5. Modularity :

Many programs can be broken into a series of identifiable sub tasks. It is a good
programming practice for the programmer to implement each individual subtask as a separate
program module.

Documentation section

Linkage section

Define section

Global declaration section

Main()

{

declaration part

executable part

}

subprogram section

{

function-1()

function-2()

.

.

function-n()

}

PROGRAMMING WITH C & C++ 1.5 STRUCTURE OF C LANGAUGAE

1.2.6. Documentation section :

The documentation section consists of a set of comment lines giving the name and reference
of the program. The comment lines should be enclosed /* -----------------*/.

Ex : /* this is my first c program*/

// This is my first c program.

Sometimes this section is optional.

1.2.7. Link section :

The first line of the program. This section provides instructions to the compiler to link
functions from the standard input/output library. This is called preprocessor directive.

Ex : #include<stdio.h>

This is called header file, which includes all the input and output functions to the compiler.

#include<math.h>

This includes all the mathematical operations like sqrt, pow, log.

#include<string.h>

This includes all the string functions like is upper, is lower, etc.

1.2.8. Definition section :

This section defines all the symbolic constants.

Syntax: #define symbolic name value

Ex: #define is 1000

#define pa 2000

#define name “sairam”

Note :

Symbolic names are nothing but variable names. There was no blank space in
between # and define.

#define statement should not end with semicolon.

1.2.9. Global declaration section :

There are some variables that are used in more than one function such variables are called
global variables. These variables are declared in the global declaration section. That is
outside of all the functions. They are called global variables.
main function:

Every C program must have one main function called “main”. The execution of C program
starts from the main function. In this function we have two parts. Those are declaration part
and executable part.

 CENTRE FOR DISTANCE EDUCATION 1.6 ACHARYA NAGARJUNA UNIVERSITY

In the declaration part declare all the variables used in the executable part. These two parts
must appear in between the opening ({) and closing braces (}).

Subprogram Section :

Subprogram section contains all the user-defined functions that are called in the main
function. User defined functions are generally placed immediately after the main function.

Examples :

1. A Program for printing single statement.

#include<stdio.h>

main()

 {

printf (“This is my first program”);

 }

Output : This is my first program.

2. A Program for printing address line by line.

 #include<stdio>

 main ()

 {

 printf(“G.VENUGOPAL RAO\n”);

printf(“LECTURER \n”);

printf(“ DEPT OF COMPUTERS\n”);

printf(“ J.K.C.COLLEGE\n”);

 }

Output : G.VENUGOPAL RAO

LECTURER

DEPT OF COMPUTERS

J.K.C.COLLEGE

1.3. C CHARACTER SET :

Character set means the characters and symbols that can be used in a C program. They are
grouped to form the commands, expressions and other tokens for C language. Character set
is the combination of characters, digits, special characters and blank spaces.

PROGRAMMING WITH C & C++ 1.7 STRUCTURE OF C LANGAUGAE

C language uses :

Alphabets : Upper case letters A to Z

Lower case letters a to z

Digits : 0 to 9

Special Characters : {,}, #, : ,;,&,? Etc.,

1.4. SUMMARY :

In this chapter C has efficient programming characteristics and it explains the history
and development of, C language.

1.5. KEY WORDS :

 Computer : A computer is an electronic machine that can store and deal with
large amounts of information.

 Computer Program : It is a sequence or set of instructions in a programming
 language for a computer to execute.

 Languages : A computer language is a formal language used to communicate
 with a computer.

1.6. SELF ASSESSMENT QUESTIONS :

1. What is a C Program? Discuss the types of programming languages?

2. Explain the structure of C language program?

3. Write about the C Character Set?

1.7. FURTHER READINGS :

1. “Programming with C” by Byron C.Gotttfried.

2. “Let us C” by Yeshavanth kanethkar.

3. “Working with C” by Yeshavanth kanethkar.

LESSON - 2

TOKENS IN C

AIMS AND OBJECTIVES:

The objectives of this lesson are to

 Discuss the C program elements (keywords).

 Explain different C program entities like identifiers, data types and expressions.

STRUCTURE OF THE LESSON:

2.1. Constants

2.1.1. Integer constant

2.1.2. Floating constant

2.1.3. Character constant

2.1.4. Back slash character constants (or) escape sequences

2.1.5. String Constant

2.2. Variables

2.3. Keywords

2.4. Identifiers

2.5. C data types

2.6. Summary

2.7. Key words

2.8. Self Assessment Questions

2.9. Further Readings

2.1. CONSTANTS :

A constant is an identifier whose value can never be changed during the program
execution. A constant is very similar to variables in the C programming language, but it can
hold only a single variable during the execution of a program. It means that once we assign
value to the constant, then we can’t change it throughout the execution of a program- it stays
fixed.

Use of the Constants in C :

A constant is basically a named memory location in a program that holds a single
value throughout the execution of that program. It can be of any data type- character,
floating-point, string and double, integer, etc. There are various types of constants in C. It has
two major categories- primary and secondary constants. Character constants, real constants,

 CENTRE FOR DISTANCE EDUCATION 2.2 ACHARYA NAGARJUNA UNIVERSITY

and integer constants, etc., are types of primary constants. Structure, array, pointer, union,
etc., are types of secondary constants.
What are Literals in C ?

Literals are referred to as the values that we assign to the variables that remain
constant throughout the execution of a program. Generally, we can use both the terms- literal
and constants interchangeably. For instance, the expression “const int = 7;”, is a type of
constant expression, while we refer to the value 7 as a constant integer literal.
C has four basic types of constants. They are

1. Integer constant

2. Floating-point constant

3. Character constant

4. Back slash character constant

5. String constant

2.1.1. Integer constant :

It can be an octal integer or a decimal integer or even a hexadecimal integer. We
specify a decimal integer value as a direct integer value, while we prefix the octal integer
values with ‘o’. We also prefix the hexadecimal integer values with ‘0x’.

The integer constant used in a program can also be of an unsigned type or a long type. We
suffix the unsigned constant value with ‘u’ and we suffix the long integer constant value with
‘l’. Also, we suffix the unsigned long integer constant value using ‘ul’.

Represenation samples of Integer constant,

55 —> Decimal Integer Constant

0x5B —> Hexa Decimal Integer Constant

O23 —> Octal Integer Constant

68ul —> Unsigned Long Integer Constant

50l —> Long Integer Constant

30u —> Unsigned Integer Constant

 Example : 0 1 743 5280

2.1.2. Floating constant :

This type of constant must contain both the parts- decimal as well as integers.
Sometimes, the floating-point constant may also contain the exponential part. In such a case
when the floating-point constant gets represented in an exponential form, its value must be
suffixed using ‘E’ or ‘e’.

 Example 1 :

We represent the floating-point value 3.14 as 3E-14 in its exponent form.

 PROGRAMMING WITH C & C++ 2.3 TOKENS IN C

 Example 2 : 0. 1. 0.2 825.602 2E-8 0.06E-3

3*105 can be represented as follows :

300000. 3E5 3E+5 3.0E+5 .3E+6 30E4

5.026*10-17 can be represented as follows :

 5.026E-17

 .5026E-16

2.1.3. Character constant :

The character constants are symbols that are enclosed in one single quotation. The maximum
length of a character quotation is of one character only.

Example 1 :

‘B’

‘5’

‘+’

Some predefined character constants exist in the C programming language, known as escape
sequences. Each escape sequence consists of a special functionality of its own, and each of
these sequences gets prefixed with a ‘/’ symbol. We use these escape sequences in output
functions known as ‘printf()’

 Example 2 : 'A', 'X', '3', '$'

2.1.4. Back slash character constants (or) escape sequences :

C supports some back slash character constants that are especially used in output
statements. They consist of two characters, which will be enclosed within the single codes.
Every back slash character constant will perform its individual task.

S.NO CONSTANT MEANING ASCII VALUE
1 ‘\n’ New line 010
2 ‘\a’ Bell 007
3 ‘\b’ Back space 008
4 ‘\r’ Vertical tab 011
5 ‘\t’ Horizontal tab 009
6 ‘\f’ Form feed 012
7 ‘\r’ Carriage return 013
8 ‘\o’ Null 000

 CENTRE FOR DISTANCE EDUCATION 2.4 ACHARYA NAGARJUNA UNIVERSITY

2.1.5. String Constant :

A string consists of any number of consecutive characters enclosed in double
quotations.

The string constants are a collection of various special symbols, digits, characters, and escape
sequences that get enclosed in double quotations.

The definition of a string constant occurs in a single line :

“This is Cookie”

We can define this with the use of constant multiple lines as well :

” This\

is\

Cookie”

The definition of the same string constant can also occur using white spaces :

“This” “is” “Cookie”

All the three mentioned above define the very same string constant.

Ex : "green", "Jkc college"

Creation and Use of Constants in C :

We can create constants in the C programming language by using two of the concepts
mentioned below :

 By using the ‘#define’ preprocessor

 By using the ‘const’ keyword.

Use of the ‘const’ Keyword :

The ‘const’ keyword is used to create a constant of any given datatype in a program. For
creating a constant, we have to prefix the declaration of the variable with the ‘const’
keyword. Here is the general syntax that we follow when using the ‘const’ keyword :

const datatype constantName = value ;

 OR

const datatype constantName ;

Let us look at an example to understand this better

const int a = 10 ;

In this case, a is an integer constant that has a fixed value of 10.

 PROGRAMMING WITH C & C++ 2.5 TOKENS IN C

The program will run as follows :
#include<stdio.h>

#include<conio.h>

void main()

{

int q = 9 ;

const int a = 10 ;

q = 15 ;

a = 100 ; // creates an error

printf(“q = %d\na = %d”, q, a) ;

}

The program given above creates an error. It is because we are trying to change the value of
the constant variable (a = 100).

Use of the ‘#define’ preprocessor :

One can also use the ‘#define’ preprocessor directive to create the constants. And
when we create the constants by making use of the preprocessor directive, we must define it
in the very beginning of the program. It is because we must write all the preprocessor
directives before the global declaration.

Here is the syntax that we must use for creating a constant by making use of the
‘#define’ preprocessor directive :

#define CONSTANTNAME value

Let us look at an example to understand this better,

#define PI 3.14

In this above-mentioned case, PI is a constant, and it has a value of 3.14.

We can run a program for this as follows :
#include<stdio.h>

#include<conio.h>

#define PI 3.14

void main()

{
int a, area ;

printf(“Enter the radius of the given circle here : “) ;

scanf(“%d”, &a) ;

area = PI * (a * a) ;

printf(“The area of the circle is = %d”, area) ;

}

 CENTRE FOR DISTANCE EDUCATION 2.6 ACHARYA NAGARJUNA UNIVERSITY

2.2. VARIABLES :

A variable is an identifier that is used to represent some specified type of information
or a variable is an identifier whose value may or may not be changed during the program
execution.
 int a, b, c;

 Char d; a=3; b=4; d = 'a';

All variables must be declared before they can appear in executable statements.

 int a, b, c;
 float root1, root2;
 char flag;

2.3. KEYWORDS :

There are certain reserved words, called keywords that have standard, predefined
meanings in C. These keywords are to be used for their intended purpose only in a C
program. There are 32 words defined as keywords in C. They are always written in lower
case. A complete list is as follows :

 auto double int struct

 break else long switch

 case enum register typedef

 char extern return union

 const float short unsigned

 continue for signed void

 default goto sizeof volatile

 do if static while

In addition to this list of keywords, your compiler may define a few more. If it does,
they will be listed in the documentation that comes along with your compiler.

2.4. IDENTIFIERS :

Identifiers are names given to various program elements, such as variables, functions
and arrays. Identifiers consist of letters and digits, in any order, except that the first character
must be a letter. It allows both uppercase and lowercase letters. Upper and lowercase letters
are not interchangeable, i.e.; uppercase letter is not equivalent to the corresponding lowercase
letter and vice versa. The underscore character (_) can also be included. An underscore is
often used in the middle of an identifier.

Valid Identifiers Invalid Identifiers

A, B, Stno, tax_rate etc., 4th "x"

 PROGRAMMING WITH C & C++ 2.7 TOKENS IN C

2.5. C – DATA TYPES :

C supports several different types of data, each of which may be represented
differently within the computer's memory. A data type is a C token that tells about the type of
data being assigned to an identifier.

C supports a rich set of data types. The category follows :

 Primary data types or Primitive data types

 Secondary data types

While using the above data types, one should intimate the compiler by providing
corresponding format specifier or control string.

2.6. SUMMARY :

In this chapter Basics required to write a C program, like character set, keywords, data types.
There are three basic data types in C like integer, float and character.

2.7. KEY WORDS :

Tokens : Tokens in C is the most important element to be used in creating a program in C.

Program : C is the combination of both low level (assembly) and high-level programming
languages.

Constants : Constant is a value or variable that can't be changed in the program.

Keywords : Keywords are words that have special meaning to the C compiler.

Identifiers : Identifiers" or "symbols" are the names you supply for variables, types, functions,
and labels in your program.

Data types : A data type is a collection or grouping of data values, usually specified by a
set of possible values, a set of allowed operations on these values, and/or a
representation of these values as machine types.

2.8. SELF ASSESSMENT QUESTIONS :

1. What is Token?

2. Explain the constants?

Primary data types :

short int

int

long int

float

double

long double

Secondary data types :

Arrays

Functions

Pointers

Structures

Unions

Enumeration

 CENTRE FOR DISTANCE EDUCATION 2.8 ACHARYA NAGARJUNA UNIVERSITY

3. Differences between variables and keywords?

4. Write the properties of Identifiers?

5. Explain various data types in C?

2.9. FURTHER READINGS :

1. “Programming with C” by Byron C.Gotttfried.

2. “let us C” BY Yeshavanth kanethkar.

3. “working with C”BY Yeshavanth kanethkar .

4. “Programming in ANSI C” by E.Balagurusamy.

5. “Sams Teach Yourself C “ by Tony Zhang.

LESSON - 3

OPERATORS AND STANDARD I / O FUNCTIONS IN C

AIMS AND OBJECTIVES :

The objectives of this lesson is to

 know various types of operators that can be used in a C program.

 discuss various types of input and output functions of a C program.

STRUCTURE OF THE LESSON :

3.1. C operators (arithmetic, relational, logical, increment and decrement)

3.1.1. Binary Operators

3.1.2. Unary Operator

3.2. Relational Operators

3.3. Logical Operators

3.4. Standard I/O in C (printf, scanf)

3.4.1. printf() function

3.4.2. scanf() function

3.5. Summary

3.6. Key words

3.7. Self Assessment Questions

3.8. Further Readings

3.1. C OPERATORS (ARITHMETIC, RELATIONAL, LOGICAL, INCREMENT
AND DECREMENT) :

An operator performs an operation over one or more operands. C supports a rich set of
operators. The following are the some of the examples.

3.1.1. Binary Operators :

A binary operator is an operator that performs operations on two operands or values. There
are many binary operators in C. Some of them are: +, -,*, /, %, +=,-=,*=,/= etc.,

Arithmetic operators are the regular operators that can be used to perform basic arithmetic
operations like addition subtraction, multiplication and division in a program in order to solve
a problem.

Operators Purpose
+ Addition
- Subtraction
* Multiplication
/ Division
% Reminder

 CENTRE FOR DISTANCE EDUCATION 3.2 ACHARYA NAGARJUNA UNIVERSITY

 Suppose a and b are integer variables such as a=10 b=3

 Expression Value
 a + b 13
 a - b 7
 a * b 30
 a / b 3
 a % b 1

 v1, v2 are floating points variables whose values are 12.5 and 2.0

 Expression Value
 v1 + v2 14.5
 v1 - v2 10.5
 v1 * v2 25.0
 v1 / v2 6.25

The value of an expression can be converted to a different data type if desired. To do so the
expression must be preceded by the name of the desired data type, enclosed in parentheses.

 (Data type) expression

 int a = 10;
int b = 3;
a / b becomes 3
(float)a / (float)b becomes 3.33
int 10 + 15.5 becomes 25

3.1.2. Unary Operator :

A unary operator performs operation on one operand. The unary operators are : ++, - -

Ex:
 + + a or a+ + is equivalent to a = a + 1

 - - a or a- - is equivalent to a = a - 1.

Here + +a - Pre-incrementation

 a+ + - post-incrementation

 - -a - pre-decrementation

 a- - - post-decrementation

 In Pre-incrementation the value is incremented first, then assigned.

 In Post-incrementation, the value is assigned first, then incremented.

 In Pre-decrementation, the value is decremented first, then assigned.

 In Post-decrementation, the value is assigned first, then decremented.

 PROGRAMMING WITH C & C++ 3.3 OP.s & STANDARD I/O FN.s IN C

For example:

 int i = 5;

printf ("%d\n",i); 5

printf ("%d\n",i++); 5

printf ("%d\n",i); 6

printf ("%d\n",++i); 7

printf ("%d\n",i); 7

printf ("%d\n",i--); 7

printf ("%d\n",i); 6

printf ("%d\n",--i); 5

3.2. RELATIONAL OPERATORS :

These operators maintain relation with two values and two expressions.

 Operators Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

 == equal to

!= not equal to

3.3. LOGICAL OPERATORS :

These operators maintain comparisons with two values and two expressions.

 Operator Meaning

 && AND

 || OR

 ! NOT

Assignment Operators :

 In C there are different assignment operators available. They are: =, +=, -=, *=, /=, %=.

Syntax : identifier = expression;

Example : a=3;

 x=y;

 sum=a+b;

 a + = 4; // a = a+4;

 CENTRE FOR DISTANCE EDUCATION 3.4 ACHARYA NAGARJUNA UNIVERSITY

 a - = 4; // a = a- 4;

 a * = 4; // a = a4;

 a /= 4; // a = a/4;

 a %= 4; // a = a%4;

The Conditional Operator or Ternary Operator Pair :

Simple conditions and operations can be carried out with the conditional operator (? :). An
expression that makes use of the conditional operator is called conditional expressions.

Conditional expression is written in the form :

Exp1? Exp2: Exp3;

Exp1, Exp2, Exp3 are the general arithmetic expressions.

The operator “?:” works as follows.

Exp1 is evaluated first; if it is true then the Exp 2 is executed and becomes the value of the

expression.

If Exp1 is false Exp3 is executed and becomes the value of the expression.

Note :
Only one of the expressions (either exp2 or exp3) is evaluated.

Ex: a=10 and b=15

X=(a>b)?a:b;

In this example X will be assigned a value of b, because b value is big.
This can be achieved using the if- else statement as follows.

If(a>b)

X=a;

Else

X=b;

Expressions :

An expression represents a single data item, such as a number or a character. It may also
consist of a combination of entities interconnected by one or more operators.

 Ex: c=a+b

 x=y;

 x<=y

 x==y

 ++i;

 PROGRAMMING WITH C & C++ 3.5 OP.s & STANDARD I/O FN.s IN C

3.4. STANDARD I/O IN C[(printf(), scanf()] :

3.4.1. printf() FUNCTION :

A standard output statement with which the user is able to display or view the result or output
of a program is nothing but a printf() statement. printf() is a C library function. This
function can be used to output any combination of numerical values, single characters, and
strings.

 Syntax : printf (control-string,arg1,arg2,...);

Where control string refers to a string that contains formatting information, and arg1, arg2 are
arguments that represent individual output data items.

 %c Single character

 %d Decimal integer

 %e Floating point value

 %f Floating point value

 %s String

 %x Hexa decimal

 %o Octal

However, both printf() and scanf() are the standard input and output statements, they can be
referred as formatted I/O statements or standard I/O.

Example:

#include<stdio.h>
main()
 {

printf(“HELLO HOW ARE YOU\n”);

printf(“I AM FINE”);
}

Output :
 HELLO HOW ARE YOU

 I AM FINE
3.4.2. scanf() function :

In order to provide input to any program one has to use a standard input statement in C.
Another way to input data into the computer is through a standard input device using C
library function scanf(). This function can be used to enter any combination of numerical
values, single characters and strings.

Syntax : scanf(control-string, arg1,arg2,.... argn);

Where control string refers to a string containing certain required formatting information and
arg1, arg2...argn are arguments that represent the individual input data items.

 %c Single character

 CENTRE FOR DISTANCE EDUCATION 3.6 ACHARYA NAGARJUNA UNIVERSITY

 %d Decimal integer

 %e Floating point value

 %f Floating point value

 %s String

 %x Hexa decimal

 %o Octal

Each variable name must be preceded by an ampersand (&). The arguments are actually
pointers that indicate where the data items are stored in the computer’s memory.

Example :
 int a;

 float b;

 char c;

scanf("%d%f%c",&a,&b,&c);

 char name[20];

scanf("%s", name);

Example :

#include<stdio.h>

main()
 {
 int a,b;

 printf(“enter the values of a and b\n”);

 scanf(“%d%d”,&a,&b);

 printf(“the entered values are\n”);

 printf(“a is %d \n b is %d”, a, b);
 }

3.5. SUMMARY :

In this chapter we have learned the some C operators like arithmetic, relational,
logical, increment and decrement. WE have leant the some Standard I/O in C functions in C.

3.6. KEY WORDS :

 Operators : An operator is a character or characters that determine the action
that is to be performed or considered.

 Synatx : Syntax is the grammatical structure of sentences.

 PROGRAMMING WITH C & C++ 3.7 OP.s & STANDARD I/O FN.s IN C

 Standard I/O : C programming language libraries that allow input and output in
a program.

 Scanf() : The scanf() function is a commonly used input function in the C

programming language.

 Prinf() : The printf() function sends a formatted string to the standard output (the
display).

3.7. SELF ASSESSMENT QUESTIONS :

1. What is operator? List the various types of operators in C?S

2. Write the arithmetic operators in C

3. Compare the relational and logical operators in C

4. Describe the increment and decrement operators?

5. What are the commonly used I/O functions in C?

6. Explain scanf() function?

7. Discuss the printf()function?

3.8. FURTHER READINGS :

1. “Programming with C” by Byron C. Gotttfried.

2. “let us C” BY Yeshavanth kanethkar.

3. “working with C”BY Yeshavanth kanethkar .

4. “Programming in ANSI C” by E. Balagurusamy.

5. “Sams Teach Yourself C “ by Tony Zhang.

LESSON – 4

STATEMENTS IN C

AIMS AND OBJECTIVES :

The main objective of this lesson is to know the effective programming techniques using

conditional branching.

STRUCTURE OF THE LESSON :

4.1. Conditional Branching (Or) Decision Making

4.1.1. Decision making through simple if statement

4.1.2. Decision making through if – else statement

4.1.3. Decision making using nested if

4.1.4. Decision making through else-if Ladder

4.2. Switch Statement

4.3. Summary

4.4. Key words

4.5. Self Assessment Questions

4.6. Further Readings

4.1. CONDITIONAL BRANCHING (OR) DECISION MAKING :

Conditional branching is the most basic control feature of any programming language. It
enables a program to make decisions, to decide whether or not to execute a statement or a
block of statements based on the value of an expression. The expression may result in either
true or false value. Since the value of the expression may vary from one execution to another,
this feature allows a program to react dynamically to different data.

C supports various types of conditional branching statements. The following categories
illustrate several conditional control structures.

1. Simple if

2. if-else

3. Nested if

4. else-if ladder

4.1.1.DECISION MAKING THROUGH SIMPLE if STATEMENT :

The simple if statement is a wonderful decision making statement and is used to control the
flow of execution of a single or multiple instructions.

 CENTRE FOR DISTANCE EDUCATION 4.2 ACHARYA NAGARJUNA UNIVERSITY

The general form of “simple if” follows :

If (condition/expression)

 Statement;

In this statement the given condition is
tested first and responds accordingly. If the
result of expression is true then the given
statement is executed. If the result is false
the statement cannot be executed.

When multiple statements are to be executed using if control structure then it may be referred
as compound if.

Syntax:

If (expression)
 {
 statement-block;
 }
 statement-x;

The statement-block may be a single statement or a group of statements. If the expression is
true statement-block will be executed, otherwise the statement-block will be skipped and the
execution will jump to the statement-x.

Example:

Program to find biggest of two numbers.

#include<stdio.h>
main()
 {
 int a, b;

 printf(" \n\t Enter A value : ");

 scanf("%d", &a);

 printf(" \n\t Enter B value : ");

 scanf("%d", &b);

 if (a>b)

 printf(" \n %d is Greater than %d", a, b);

 if (b>a)

 printf(" \n %d is Greater than %d", b, a);
 }

True

Entry

Expression

Statement

PROGRAMMING WITH C & C++ 4.3 STATEMENTS IN C

4.1.2. DECISION MAKING THROUGH if – else STATEMENT :

In if-else control statement there exists an
extension of the simple if statement. It
allows the user to perform another block of
statements in case the condition result is
false.

syntax :

 if (expression)

 statement-x;

 else

 statement-y ;

Here the expression is evaluated; if the result of the expression is a true then statement-x is
executed otherwise statement-y will be executed.

Example:

Program to check whether given number is even or odd

#include<stdio.h>
main()
{
 int n;

 printf(" \n Enter a number. . :");

 scanf("%d",&n);

 if (n%2==0)

 printf(" \n Given number is even"):

 else

 printf(" \n Given number is odd"):

 getch();
}

4.1.3. DECISION MAKING USING nested if :

A nested if control structure consists of multiple if statements in one another. Here
each if statement consists of subsequent branching statement. Literally a nested if consists of
one if statement in another if statement. It is used when multiple conditions are to be
evaluated.
Syntax:

if(expression)

 {

if(expression)

True

Entry

Expre
ssion

statement x statement y

False

Flowchart

 CENTRE FOR DISTANCE EDUCATION 4.4 ACHARYA NAGARJUNA UNIVERSITY

 {

if(expression)

 {

Here evaluations of expressions or conditions are based on the first condition. If the first
condition itself is false, then there is no evaluation of other conditions. At any level of
expression the program control may be altered.

Example :

 A Program to f ind the Biggest of 3 numbers using nested if

#include<stdio.h>

main()

{
int a,b,c,big;

printf(" \n Enter the value of a : ");

scanf("%d",&a);

printf(" \n Enter the value of b : ");

scanf("%d",&b);

printf(" \n Enter the value of c : ");

scanf("%d",&c);

if (a>b)

 if (a>c)

 big = a;

 else

 big = c;

 else

 if (b>c)

 big = b;

 else

 big = c;

 printf(" \nBiggest of three numbers is:%d”,big);

 }

PROGRAMMING WITH C & C++ 4.5 STATEMENTS IN C

4.1.4. DECISION MAKING THROUGH else-if LADDER :

In else if ladder number of conditions are checked depending on the falsity of the previous
condition. Literally, too many conditions are evaluated in if else ladder.

Syntax:

If <condition1>

{

}

else if <condition2>

{

 ---- True block 1

 }

 else

 {

 ------ False block

 }

In this, condition1 is checked and if it is true then its corresponding condition is executed. If
the condition is false then next condition is verified. If all the given conditions are false then
false block is executed. Only one of all the available blocks gets executed. After the
execution of any one of the blocks, control is transferred to next statement after the construct.

Example:

A Program to find biggest of three numbers

#include<stdio.h>

main()

 {

 int a,b,c;

 clrscr();

 printf(“enter three numbers:”);

 scanf(“%d%d%d”,&a,&b,&c);

 if(a>b)

 CENTRE FOR DISTANCE EDUCATION 4.6 ACHARYA NAGARJUNA UNIVERSITY

 if(a>c)

 printf(“%d is big”,a);

 else

 printf(“%d is big”,c);

else if(b>c)

 printf(“%d is big”,b);

else

printf(“%d is big “,c);

 }

Example :

A Program to award grade to a student.

#include<stdio.h>

main()

 {

int marks;

printf("enter the marks\n");

scanf("%d",&marks);

if(marks>79)

 printf(" HONOURS\n");

else if(marks>59)

 printf("FIRST");

else if(marks>49)

 printf("SECOND");

else if(marks>39)

 printf("THIRD");

else

 printf("FAIL");

 }

4.2. SWITCH STATEMENT :

C provides a special kind of conditional control structure that acts as an alternative to if else
ladder. When there are more conditions or paths in a program, if-else branching can become
more difficult. In such situations switch may act better. The switch statement allows the user
to specify an unlimited number of execution paths based on the value of a single expression.

PROGRAMMING WITH C & C++ 4.7 STATEMENTS IN C

Each execution path is referred as a case. However, all the cases should be unique. Each case
must be terminated by a ‘break’ statement. The ‘default’ case is not mandatory.

In a switch statement, there are four different keywords to be used :

 switch

 case

 break

 default

Though the switch control structure enables the user to improve clarity of the program, it
causes more errors. So, it requires more attention while implementation.

Syntax:
 switch(expression)

{
 case value1:

statement;

 break;

 case value2:

statement;

 break;

 :

 :

 :

 default :

statement;
 }

Among all the cases, only one case can be executed successfully because each case is
terminated by a ‘break’ statement.

Example :

#include<stdio.h>

main()

 {

int i=2;

switch(i)

 {

case 1:

printf(" 1 case\n");

 CENTRE FOR DISTANCE EDUCATION 4.8 ACHARYA NAGARJUNA UNIVERSITY

case 2:

printf("2 case\n");

case 3:

printf("3 case\n");

default:

printf("default");

 }

 }

Output : 1 case

 2 case

 3 case

 default

Example :

#include<stdio.h>

main()

 {

int i=2;

switch(i)

 {

case 1:

printf(" 1 case\n");

break;

case 2:

printf("2 case\n");

break;

case 3:

printf("3 case\n");

break;

default:

printf("default");

}

}

Output : 1 case

PROGRAMMING WITH C & C++ 4.9 STATEMENTS IN C

Example :

A Program to accept one integer value and print the related week day.

#include<stdio.h>

main()

{

int n;

printf("enter the value of n:\n");

scanf("%d",&n);

switch(n)

 {

 case 1:

 printf("Monday");

 break;

case 2:

 printf(" tueseday");

 break;

case 3:

 printf("Wednesday");

 break;

case 4:

 printf(" thurseday");

 break;

case 5:

 printf("friday");

 break;

case 6:

 printf("saturday");

 break;

case 7:

 printf("sunday");

 break;

}
}

 CENTRE FOR DISTANCE EDUCATION 4.10 ACHARYA NAGARJUNA UNIVERSITY

Example :

A Program to accept two integer values and perform arithmetic operation
by getting the user input.(1) Addition, 2) Subtraction, 3) Multiplication,
4) Division and 5) Exit) .

#include<stdio.h>

main()

 {

int a, b, c, ch;

clrscr();

printf(" \n\t \t \t Enter two numbers : ");

scanf("%d %d", &a, &b);

printf(“Enter your choice:”)l

printf(“1)Addit ion\n2)Subtraction”);

printf(“ \n3)Multipl ication”);

printf(“ \n4) Division. \n5) Exit”).

scanf(“%d”&ch);

switch (ch)

 {

 case 1:

 c = a + b;

 break;

 case 2:

 c = a - b;

 break;

 case 3:

 c = a * b;

 break;

 case 4:

 c = a / b;

 break;

 default :

 printf(" \n Invalid option ");

 exit(0);

 }

 printf(" \n\t \t \t Result :%d",c);

}

PROGRAMMING WITH C & C++ 4.11 STATEMENTS IN C

4.3. SUMMARY :

In this we have learnt about the conditional looping and unconditional statements. You have
also seen conditional statements, if, if-else, nested If and switch. Usage of break, continue,
goto and exit statements.

4.4. KEY WORDS :

 Conditional Control statements :

Use if to specify a block of code to be executed, if a specified condition is true.

 Simple if :

If the given condition is true then the statements inside the body of “if” will be
executed.

 If-else :

if-else statement is used to perform the operations based on some specific condition.
If the given condition is true, then the code inside the if block is executed, otherwise else
block code is executed.

 Nested if :

A nested if in C is an if statement that is the target of another if statement.
Nested if statements mean an if statement inside another if statement.

 Else-if ladder :

The conditional expressions are evaluated from the top downward. As soon as a true
condition is found, the statement associated with it is executed, and the rest of the ladder is
bypassed. If non of the conditions is true, then the final else statement will be executed.

 Switch case statements :

A switch statement allows a variable to be tested for equality against a list of
values. Each value is called a case, and the variable being switched on is checked
for each switch case.

4.5. SELF ASSESSMENT QUESTIONS :

1. What are the conditional control statements in C?

2. Explain Switch and Case statements with example?

3. Write the break and default statements with example?

4.6. FURTHER READINGS :

1. “Programming with C” by Byron C.Gotttfried.

2. “let us C” BY Yeshavanth kanethkar.

3. “working with C”BY Yeshavanth kanethkar.

4. “Programming in ANSI C” by E.Balagurusamy.

5. “Sams Teach Yourself C “ by Tony Zhang.

6. “The Spirit of C” BY Henry Mullish.

LESSON - 5

LOOPS IN C

AIMS AND OBJECTIVES :

The aim(s) of this lesson is to learn about a very important feature of the C language called
looping. Looping also called iteration, it is used in programming to perform the same set of
statements over and over until certain specified conditions are met.

STRUCTURE OF THE LESSON :

5.1. Repetitive Statements (while, do while and for loops)

5.1.1. while Statement

5.1.2. do - while Statement :

5.2. for loop

5.3. Use of break and continue Statements

5.3.1. break

5.3.2. continue Statement

5.4. Summary

5.5. Key words

5.6. Self Assessment Questions

5.7. Further Readings

5.1. Repetitive Statements (while, do while and for Loops) :

5.1.1. While Statement :

The while control structure executes a single or multiple statements for repeated
number of times based on a given condition. It executes the statements as long as the given
condition or expression results in a true value. It terminates execution as and when the
condition is false.

Syntax : initialization statement;

 while(condit ion)

 {

 …

Condition reachable statement;

 }

Flowchart :

Here the condition is tested every time, it executes the block of statements. The keyword
while verifies the trueness and falsity of the expression and responds accordingly. If the
condition is false for the first time the minimum number of iterations is 0 in while control
structure. It requires three statements in order to perform repetitive tasks.
They are

 Initialization statement

 Conditional statement

 Condition reachable statement

If any of the above statements is ignored then the while may not perform well.

Examples on while :

Example 1 :

A program to print natural numbers from 1 to 10 .

#include<stdio.h>

main()

 {
 int i;

 i=1;

 while (i<=10)

 {
 printf("%d\n", i);

 i++;

 }
 }

Body of loop

True

False

Next Statement

Condition

 PROGRAMMING WITH C & C++ 5.3 LOOPS IN C

Example 2 :

A Program to find whether the given number is prime or not.

#include<stdio.h>

#include<conio.h>

main()

 {

 int i,n,c;

 clrscr();

 printf("enter n vale");

 scanf("%d",&n);

 i=1;

 c=0;

 while(i<=n)

 {

 if(n%i==0)

 c++;

 i++;

 }

 if(c==2)

 printf("%d is prime",n);

 else

 printf("%d is not prime",n);

 getch();

 }

Example 3:

A Program to find large and small numbers with in the given numbers.

 #include<stdio.h>

 #include<conio.h>

main()

 {

 int num,n,i,lar=0,small=32767;

 clrscr();

 printf("enter the range:\n");

 scanf("%d",&n);

 i=1;

 while(i<=n)

 {

 printf("enter element\n");

 scanf("%d",&num);

 if(num>lar)

 lar=num;

 if(num<small)

 small=num;

 i=i+1;

 }

 printf("large=%d small=%d",lar,small);

 }

Example 4 :

A Program to find the given number is an automorphic number or not.

#include<stdio.h>

#include<conio.h>

main()

 {

 int m,n,nsq,den=1;

 clrscr();

 printf("enter the value of n:\n");

 scanf("%d",&n);

 m=n;

 nsq=n*n;

 PROGRAMMING WITH C & C++ 5.5 LOOPS IN C

while(m>0)

 {
 den=den*10;

 m=m/10;

 }

 if((nsq%den)==n)

 printf("%d is an automarphic",n);
 else

 printf("%d is not an automarphic",n);
 }

Example 5 :

A Program to print strong numbers up to some specified rage.

#include<stdio.h>

main()

 {
int j,sum,i,n,fact,d,temp;

clrscr();

printf("enter the value of n:\n");

scanf("%d",&n);

for(j=1;j<n;j++)

{
sum=0;

temp=j;

while(temp>0)

 {
 d=temp%10;

 fact=1;

 for(i=1;i<=d;i++)

 fact=fact*i;

 sum=sum+fact;

 temp=temp/10;

 }
 if(sum==j)
 printf("%d is strong number\n",j);

 }

 }

5.1.2. do - while Statement :

C provides another form of while control structure i.e. , do-while control
structure. In do-while control structure the statements in the block get
execute first , later on the condition is evaluated. Hence the user can assume
that the minimum number of iterations for do while control structure as 1,
even if the expression or condition results in false for the f irst time.

Syntax:
Initialization statement;

 do

 {

 --------- ----

 Condition reachable statement;

 } while(condition);

Flowchart :

Here the statements in the loop will be executed until the given condition becomes false. The
while statement should be terminated by a semicolon (;) in do while.

Examples on do-while Statement :

Example 1 :

A Program to find sum of given integers.

 #include<stdio.h>

 #include<conio.h>

 main()

Next
statment

Body of loop

Condition

True

False

 do

 PROGRAMMING WITH C & C++ 5.7 LOOPS IN C

{

int n,sum=0,i=0;

printf("enter any number\n");

scanf("%d",&n);

do

 {

 sum=sum+i;

 i=i+1;

 }

 while(i<=n);

 printf("%d",sum);

 }

Example 2 :

A Program to find sum of n even numbers.

 #include<stdio.h>

 #include<conio.h>

main()

 {

int n,sum=0,i=0;

clrscr();

printf("enter any number\n");

scanf("%d",&n);

do

{

sum=sum+i;

i=i+2;

}

while(i<=n);

printf("%d",sum);

}

Example 3 :

A Program to find reverse of the given integer.

#include<stdio.h>

#include<conio.h>

main()

 {

int n,rem=0,k;

clrscr();

printf("enter any number\n");

scanf("%d",&n);

do

{

k=n%10;

rem=rem*10+k;

n=n/10;

}

while(n>0);

printf("%d",rem);

}

Example 4 :

A Program to find largest and smallest of given numbers.

#include<stdio.h>

#include<conio.h>

main()

 {

int i,n,num,lar=0,small=32767;

clrscr();

printf("enter the range:\n");

scanf("%d",&n);

i=1;

do

 {

 PROGRAMMING WITH C & C++ 5.9 LOOPS IN C

printf("enter an element\n");

scanf("%d",&num);

if(num>lar)

lar=num;

if(num<small)

small=num;

i=i+1;

}

while(i<=n);

printf("large=%d\nsmall=%d",lar,small);

}

Example 5 :

A Program to find lcm and gcd of given numbers.

 #include<stdio.h>

 #include<conio.h>

main()

 {

int m,n,a,rem,lcm;

clrscr();

printf("enter two values\n");

scanf("%d%d",&m,&n);

a=m*n;

do

 {

rem=n%m;

n=m;

m=rem;

}

while(m>0);

printf("gcd = %d\n",n);

lcm=a/n;

printf("lcm=%d",lcm);

}

Example 6 :

A Program to find NCR.

 #include<stdio.h>

 #include<conio.h>

main()

 {

int n,r,s,i,ncr,fact1,fact2,fact3;

clrscr();

printf("enter the value of n and r:\n");

scanf("%d%d",&n,&r);

s=(n-r);

fact1=1;

i=1;

do

 {

fact1=fact1*i;

i++;

}

 while(i<=n);

printf("fact1 is %d\n",fact1);

 fact2=1;

i=1;

do

{

fact2=fact2*i;

i++;

 }

while(i<=r);

printf("fact2 is %d\n",fact2);

fact3=1;

i=1;

do

{

fact3=fact3*i;

 PROGRAMMING WITH C & C++ 5.11 LOOPS IN C

i=i+1;

 }

while(i<=s);

printf("fact3 is %d\n",fact3);

ncr=fact1/(fact2*fact3);

printf("the ncr is %d",ncr);

}

5.2. for LOOP :

C provides a more flexible form of looping control structure that improves
clari ty of the code. It is for control structure. Usually, for control statement
is used to perform fixed number of iterations. The major difference between
for and other looping structures is the number of iterat ions. In case of while
and do-while the number of i terations are indefinite. The user may not
predict the number of iterations. On the other hand for specif ies the number
of i terations in the statement itself .

Syntax:

for(initialization; test condition; increment/decrement part)
 {

 Body of the loop;

 }

The initialization may contain single or multiple assignment statements. A control variable is
involved in this part of statements.

The test condit ion verif ies the validity of the control variable for each
iteration.

Increment or decrement part increments or decrements the value of the
control variable in order to reach the test condition.

Examples on for :

Example 1 :

A Program to find the given number is perfect number or not.

 #include<stdio.h>

main()

 {

int sum=0,num,i,n;

clrscr();

printf("enter the number:\n");

scanf("%d",&num);

 for(i=1;i<num;i++)

 {

 if(num%i ==0)

 sum=sum+i;

 }

 if(sum==num)

 printf("%d is perfect number",num);

 else

 printf("%d is not perfect number",num);

}

Example 2 :

A Program to print armstrong numbers up to some range.

#include<stdio.h>

main()

 {

int sum=0,rem,k,n,m;

clrscr();

printf("enter the number:\n");

scanf("%d",&n);

 for(m=1;m<=n;m++)

 {

 sum=0;

 k=m;

 while(k>0)

 {

 rem=k%10;

 sum=sum+rem*rem*rem;

 k=k/10;

 }

 if(sum==m)

 printf("%d is the amstrong number\n ",m);

 }

 }

 PROGRAMMING WITH C & C++ 5.13 LOOPS IN C

Example 3 :

A Program to print largest of n numbers.

 #include<stdio.h>

main()

 {

int num,n,larg,i;

clrscr();

printf("enter the total number of values:\n");

scanf("%d",&n);

printf("enter the numbers:\n");

scanf("%d",&num);

larg=num;

for(i=0;i<n-1;i++)

 {

printf("enter an element:\n");

scanf("%d",&num);

if(larg<num)

larg=num;

 }

printf("large number is %d",larg);

}

Example 4 :

A Program to print multiplication table.

 #include<stdio.h>

 #include<conio.h>

 #definecolmax 10

 #definerowmax 12

main()

 {

int row,column,y;

clrscr();

printf("\tMULTIPLICATION TABLE \t\n");

printf("---\n");

for(row=1;row<=rowmax;row++)

{

 for(column=1;column<=colmax;column++)

 {

 y=row*column;

 printf("%4d",y);

 }

 printf("\n");

}

printf("--\n");

}

Example 5:

A Program to print triangle in this shape.

 *
 * *
 * * * *

 #include<stdio.h>

 #include<conio.h>

main()

 {

int i,j,n,k;

clrscr();

printf("enter n value :");

scanf("%d",&n);

for(i=0;i<n;i++)

 {

for(k=0;k<n-i;k++)

printf(" ");

for(j=0;j<=i;j++)

 {

printf("*");

printf(" ");

}

printf("\n");

 }

getch();

}

 PROGRAMMING WITH C & C++ 5.15 LOOPS IN C

5.3. USE OF break AND continue STATEMENTS :

5.3.1. break :

This statement takes control out of the switch statement or loop structure. In
other words, a break statement takes the control out of the current block in
execution. The control is transferred to the statement that follows the block.

Syntax : break;

5.3.2. Continue Statement :

To skip a part of the body of the loop in execution on certain condition and
for the loop to be continued for the next iterat ion continue statement is used.

Syntax : continue;

5.4. SUMMARY :

This chapter you have learned the following like Looping can be used to perform the same set
of statements over and over until specification conditions are met. Looping makes your
program concise. There are three statements, for, while and do-while, that are used for
looping in C and also some useful information from the break and continue statements.

5.5. KEY WORDS :

 Loops :

Loop is used to execute the block of code several times according to the condition
given in the loop.

 while :

The while statement lets you repeat a statement until a specified expression becomes
false.

 do-while :

The do-while statement lets you repeat a statement or compound statement until a
specified expression becomes false.

 for loop :

The for loop in C language is used to iterate the statements or a part of the program
several times.

 break and continue statements :

Break statement stops the entire process of the loop. Continue statement only stops
the current iteration of the loop.

5.6. SELF ASSESSMENT QUESTIONS :

1. What is looping? Explain various types of looping in C programming?

2. Explain the various loop constructs in available in C language?

3. How can the do-while loop vary from the while-loop?

4. What are breaking control statements?

5.7. FURTHER READINGS :

1. “Programming with C” by Byron C.Gotttfried

2. “let us C” BY Yeshavanth kanethkar

3. “Working with C”BY Yeshavanth kanethkar

4. “Programming in ANSI C” by E.Balagurusamy

5. “Sams Teach Yourself C “ by Tony Zhang

6. “The Spirit of C” BY Henry Mullish

LESSON - 6

A R R A Y S

AIMS AND OBJECTIVES :

The objectives of this lesson are to

 Explain the powerful data type called array(s).

 Various types of arrays : one – dimensional, two – dimensional and multi –

dimensional arrays.

 How an array can be declared and initialized.

STRUCTURE OF THE LESSON :

6.1. Introduction - Types of arrays

6.1.1. Declaring an Array

6.1.2. Initializing an Array

6.1.3. Array Elements in Memory

6.2. One dimensional Arrays

6.2.1. Declaration of one dimensional Arrays

6.2.2. Initializing

6.2.3. Array Elements in Memory

6.3. Two Dimensional Arrays Declaration of two dimensional Arrays

6.3.1. Declaring and Initializing

6.3.2. Array Elements in Memory

6.4. Multi - Dimensional Arrays

6.5. Summary

6.6. Key words

6.7. Self Assessment Questions

6.8. Further Readings

6.1. INTRODUCTION - TYPES OF ARRAYS :

 Many applications require the processing of multiple data items, which are having
common characteristics. In such situations it is often convenient to store the data items in an
array.

 An array is a group of related data items that are stored under a common name (or)
an array is a collection of identical (similar) type of variables stored continuously in

 CENTRE FOR DISTANCE EDUCATION 6.2 ACHARYA NAGARJUNA UNIVERSITY

memory. Each item in an array is called an element. All elements together referred by a
name array and are stored in a set of continuous memory slots.

6.1.1. Declaring an Array :

The general form of declaring an array is as follows :

Syntax : storage-class data-type array-name[array-size];

Here storage-class refers to the storage class of the array, data-type indicates type of the
declared array, array-name indicates the name of the array and array-size indicates how many
elements that the array can contain. The storage class is optional. Default values are
automatic for arrays defined within the function or a block, and external for arrays defined
outside of a function. Brackets ([]) are required in declaring the size of an array. The
brackets pair is also called the array subscript operator.

Examples :
int x[8];

char text[20];

static float n[10];

Where static specifies the storage-class. int, char, float specifies the data types of the arrays
whose names are x, text, n. The sizes of the arrays are 8,20 and 10 respectively. Arrays in C
language have index starting at 0. That means x contains the elements from 0 to (n-1).

6.1.2. Initializing an Array :

With the help of an array, we can initialize each element in an array. For instance, we can
initialize the first element in the array of day, which is as follows.

 Char day[6]=“sunday”;

The result of the above declaration is not same because of null character ‘\0’, which is
automatically added to the end of the string as follows.

day[0]=’s’

day[1]=’u’

day[2]=’n’

day[3]=’d’

day[4]=’a’

day[5]=’y’

day[6]=’\0’.

The second way to initialize an array is to initialize all elements in the array together. For
example, the following declaration initializes an integer array.

 int y[5]={100,25,89,23,56};

 PROGRAMMING WITH C & C++ 6.3 ARRAYS

Here the integers inside the braces are assigned to the corresponding elements of the array
i.e., 100 is given to the first element (y[0]),25 is given to the second element (y[1]), and so
on.

An example of initializing an array :

#include<stdio.h>

main()

{

int i;

int x[5]={100,25,89,23,56};

for(i=0;i<5;i++)

{

printf("x[%d] is initialized with %d\n", i, x[i]);

}

 }

6.1.3. Array Elements in Memory :

When we declare an array in C, they can reserved the memory immediately as per there size.

Example : int arr[8] ;

It can reserved 16 bytes in memory, 2 bytes each for the 8 integers (under Windows/Linux
the array would occupy 32 bytes as each integer would occupy 4 bytes). And since the array
is not being initialized, all eight values present in it would be garbage values. This so happens
because the storage class of this array is assumed to be auto. If the storage class is declared to
be static then all the array elements would have a default initial value as zero.

Diagram to show the functionality of the for loop :

6.2. ONE DIMENSIONAL ARRAYS :

A list of i tems can be given one variable name using only one subscript and
such a variable is called a single-subscripted variable or one-dimensional
array. A single-dimensional a rray is a group of elements that share a common
name and differentiated from one another by their posit ions within the array.

6.2.1.Declaring arrays :

Arrays must be declared before they are used. Every element in the array is
manipulated using its index. The starting index of element is 0 and ends with n-1. A list of

 CENTRE FOR DISTANCE EDUCATION 6.4 ACHARYA NAGARJUNA UNIVERSITY

data items can be given one variable name using one subscript and such a variable is called
one-dimensional array. The general form of array declaration is.

Syntax : data-type variable-name[size];

Example : int a[5];

Here index represents five integers, this complete set is called an array. Here, int specifies
the data-type of the variable, the word a specifies the name of the variable and the number 5
specifies how many elements of the type int will be in the array. This number is often called
the “dimension” of the array. The bracket [] specifies the indication dealing with the arrays.
The computer reserves 5 storage locations as shown below.

a[0]

a[1]

a[2]

a[3]

a[4]

6.2.2.Initializing :

We can initialize the elements in an array in the same way as the ordinary variables when
they are declared. The general from is

Syntax : data-type array-name [size] = {list of values};

Example : int a[5] = { 1, 2, 3, 4, 5 };

In this form the size may be omitted. In such cases, the compiler allocates enough space for
all initialized elements. In the above example, compiler allocates space for five elements
only.

char name[] = { ‘a’, ’b’, ’c’, ’d’};

Thus the above statement declares the name array of four characters, initialized with the
string “abcd”.

6.2.3. Array Elements in Memory

Consider the following array declaration.
int a[8];

This declaration reserves 16 bytes in memory. Because of each 8 integers would be 2 bytes
long. Since the array is not initialized, all the 8 values present in it would be garbage values.
Whatever be the initial values, all the array elements would always be present in continues
memory location. This arrangement of array elements in memory is shown as follows.

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

12 34 66 -45 23 346 77 90

4002 4004 4006 4008 4010 4012 4014 4016

 PROGRAMMING WITH C & C++ 6.5 ARRAYS

Example 1 :

A Program to accept 5 elements into an array and display them back.

#include<stdio.h>

main()

 {

 int a[5], i;

 clrscr();

 for(i=0;i<5;i++)

 {

 printf(" \n Enter the value of a[%d] :" , i);

 scanf("%d",&a[i]);

 }

 printf(" \n");

 for(i=0;i<5;i++)

 {

 printf(" \t%d",a[i]);

 }

 }

Example 2 :

A Program to find out sum and average of the given elements.

#include<stdio.h>

main()

 {

 int a[10],i,n,sum=0,avg;

printf("enter the range of n:\n");

scanf("%d",&n);

printf("enter %d numbers:\n",n);

 for(i=0;i<n;i++)

 {

scanf("%d",&a[i]);

 sum=sum+a[i] ;

 }

 avg=sum/n;

printf("sum=%d\n",sum);

 CENTRE FOR DISTANCE EDUCATION 6.6 ACHARYA NAGARJUNA UNIVERSITY

printf("average=%d",avg);

 }

Example 3 :

A Program to find out smallest and largest of the given elements

#include<stdio.h>

main()

 {

 int a[10],i,n,small , lar;

printf(“enter the range of n:”);

scanf(“%d”,&n);

printf(“enter %d numbers:”,n);

small=32767;

lar=0;

 for(i=0;i<n;i++)

 {

scanf(“%d”,&a[i]);

if(a[i]<small)

small=a[i];

if(a[i]>lar)

lar=a[i];

}

printf(“large=%d \n small=%d \n”,lar,small);

 }

Example 4 :

A Program to arrange elements in ascending order

#include<stdio.h>

main()

 {

 int a[10],n,i,j , temp;

printf("enter the size of array:\n");

scanf("%d",&n);

 printf("enter array elements\n");

 for(i=0;i<n;i++)

 scanf("%d",&a[i]);

 PROGRAMMING WITH C & C++ 6.7 ARRAYS

 for(i=0;i<n;i++)

 for(j=i+1;j<n;j++)

 if(a[i]>a[j])

 {

 temp=a[i];

 a[i]=a[j] ;

 a[j]=temp;

 }

 printf("elements in ascending order\n");

 for(i=0;i<n;i++)

 printf("%d\n" ,a[i]);

 }

Example 5 :

A Program to implement the linear search

#include<stdio.h>

main()

 {

 int a[10],n,i,x,found,pos;

 printf("enter the range:\n");

 scanf("%d",&n);

 printf("enter %d numbers\n" ,n);

 for(i=0;i<n;i++)

 scanf("%d",&a[i]);

 printf("enter the searching element");

 scanf("%d",&x);

 for(i=0;i<n;i++)

 {

 i f(a[i]==x)

 {

 found=1;

 pos=i;

 }

 CENTRE FOR DISTANCE EDUCATION 6.8 ACHARYA NAGARJUNA UNIVERSITY

 }

 if(found==1)

 printf("element found in position %d\n",pos);

 else

 printf("element not found\n");

 }

Example 1:

A Program to accept 5 elements into an array and display them back.

#include<stdio.h>

main()

 {

 int a[5], i ;

clrscr();

 for(i=0;i<5;i++)

 {

 printf(" \n Enter the value of a[%d] :" , i);

 scanf("%d",&a[i]);

 }

 printf(" \n");

 for(i=0;i<5;i++)

 {

 printf(" \t%d" ,a[i]);

 }

 }

Example 2:

A Program to find out sum and average of the given elements.

#include<stdio.h>

main()

 {

int a[10],i,n,sum=0,avg;

printf("enter the range of n:\n");

scanf("%d",&n);

printf("enter %d numbers:\n",n);

 PROGRAMMING WITH C & C++ 6.9 ARRAYS

for(i=0;i<n;i++)

 {

scanf("%d",&a[i]);

 sum=sum+a[i] ;

 }

 avg=sum/n;

 printf("sum=%d\n",sum);

 printf("average=%d",avg);

 }

Example 3 :

A Program to find out smallest and largest of the given elements

#include<stdio.h>

main()

 {

int a[10],i,n,small, lar;

printf(“enter the range of n:”);

scanf(“%d”,&n);

printf(“enter %d numbers:”,n);

small=32767;

lar=0;

for(i=0;i<n;i++)

{

scanf(“%d”,&a[i]);

if(a[i]<small)

small=a[i];

if(a[i]>lar)

lar=a[i];

}

printf(“large=%d \n small=%d \n”,lar,small);

}

Example 4:

A Program to arrange elements in ascending order

#include<stdio.h>

main()

 CENTRE FOR DISTANCE EDUCATION 6.10 ACHARYA NAGARJUNA UNIVERSITY

 {

int a[10],n, i,j , temp;

printf("enter the size of array:\n");

scanf("%d",&n);

printf("enter array elements\n");

for(i=0;i<n;i++)

scanf("%d",&a[i]);

for(i=0;i<n;i++)

 for(j=i+1;j<n;j++)

 if(a[i]>a[j])

 {

 temp=a[i] ;

 a[i]=a[j];

 a[j]=temp;

 }

 printf("elements in ascending order\n");

 for(i=0;i<n;i++)

 printf("%d\n",a[i]);

 }

Example 5 :

A Program to implement the linear search

#include<stdio.h>

main()

 {

int a[10],n, i,x,found,pos;

printf("enter the range:\n");

scanf("%d",&n);

printf("enter %d numbers\n",n);

for(i=0;i<n;i++)

scanf("%d",&a[i]);

printf("enter the searching element");

scanf("%d",&x);

for(i=0;i<n;i++)

 {

 PROGRAMMING WITH C & C++ 6.11 ARRAYS

 if(a[i]==x)

 {

 found=1;

 pos=i;

 }

 }

 if(found==1)

 printf("element found in position %d\n",pos);

 else

 printf("element not found\n");

 }

6.3.Two Dimensional Arrays Declaration of two dimensional arrays :

 So far we have discussed the array variables that can store a list of values. There will
be situations, where a table of values will have to be stored. For example :

 1 2 3
 4 5 6
 7 8 9

C allows us to define such table of items by using two-dimensional arrays. This type of array
can be declared as

Syntax : data-type array-name[row-size][column-size];

Example : int a[3][3];

This two dimensional array consists of three rows and three columns.

The first row first element can be accessed by a[0][0], the first row second element can be
accessed by a[0][1], similarly the third row last by a[2][2].

6.3.1. Declaring And Initializing :

 Like single dimensional arrays the initialization can be done in two-dimensional
arrays. The general form of two-dimensional array is as follows.

Syntax : Type array-name[row-size][column-size];

Example : int arr[5][3] = {{1,2,3}, {4},{5, 6, 7}};

This declares an array with five rows and three columns, but only the first three rows are
initialized, and only the first element of the second row is initialized.

1 2 3
4 0 0
5 6 7
0 0 0
0 0 0

 CENTRE FOR DISTANCE EDUCATION 6.12 ACHARYA NAGARJUNA UNIVERSITY

if we do not include the inner brackets in the declaration as follows

int arr[5][3] = {1, 2, 3, 4, 5, 6, 7};

The result is
1 2 3
4 5 6
7 0 0
0 0 0
0 0 0

6.3.2.Array Elements in Memory :

Consider the following array declaration.

int a[3][3];

This declaration reserves 18 bytes in memory. Because each of 9 integers would be 2 bytes
long. In two-dimensional arrays the memory doesn’t contain rows and columns. In memory
whether it is one-dimensional or a two-dimensional array, the array elements are stored in
one continuous chain. The arrangement of two dimensional array elements in memory are as
shown below.

Example 1 :

A Program to convert the elements in a matrix order

#include<stdio.h>

main()

 {

int a[10][10],i,j,n,m;

printf("enter the size of the matrix:\n");

scanf("%d%d",&n,&m);

printf("enter the elements\n");

for(i=0;i<n;i++)

 {

for(j=0;j<m;j++)

scanf("%d",&a[i][j]);

}

printf("the elements are:\n");

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2]

1234 34 1212 33 1434 80 1312 78 1569

 4002 4004 4006 4008 4010 4012 4014 4016 4018

 PROGRAMMING WITH C & C++ 6.13 ARRAYS

for(i=0;i<n;i++)

{

for(j=0;j<m;j++)

printf("%4d",a[i][j]);

printf("\n");

}

 }

Example 2:

A Program to perform matrix addition

#include<stdio.h>

main()

{

int a[10][10],b[10][10],c[10][10],i ,j ,n,m,p,q;

printf("enter the size of the matrix:\n");

scanf("%d%d",&n,&m);

printf("enter the 1 matrix elements\n");

for(i=0;i<n;i++)

{

for(j=0;j<m;j++)

scanf("%d",&a[i][j]);

}

printf("enter the 2 matrix elements\n");

for(i=0;i<n;i++)

{

for(j=0;j<m;j++)

scanf("%d",&b[i][j]);

}

printf("sum of two matrices: \n");

for(i=0;i<n;i++)

{

for(j=0;j<m;j++)

{

c[i][j]=a[i][j]+b[i][j];

 CENTRE FOR DISTANCE EDUCATION 6.14 ACHARYA NAGARJUNA UNIVERSITY

printf("%3d",c[i][j]);

}

printf(" \n");

}

 }

Example 3 :

A Program to perform matrix multiplication

#include<stdio.h>

main()

{

int a[10][10],b[10][10],c[10][10],i ,j ,k,n,m,p,q;

printf("enter the size of 1 matrix:\n");

scanf("%d%d",&m,&n);

printf("enter the size of 2 matrix:\n");

scanf("%d%d",&p,&q);

if(n==p)

{

printf("enter the 1 matrix elements\n");

for(i=0;i<m;i++)

for(j=0;j<n;j++)

scanf("%d",&a[i][j]);

printf("enter the 2 matrix elements\n");

for(i=0;i<p;i++)

for(j=0;j<q;j++)

scanf("%d",&b[i][j]);

printf(" matrix multiplication:\n");

for(i=0;i<m;i++)

for(j=0;j<q;j++)

{

c[i][j]=0;

for(k=0;k<n;k++)

c[i][j]=c[i][j]+a[i][k]*b[k][j] ;

printf("%3d",c[i][j]);

 PROGRAMMING WITH C & C++ 6.15 ARRAYS

}

printf(" \n");

}

else

 printf("multiplication not possible");

 }

6.4. MULTI- DIMENSIONAL ARRAYS :

C allows arrays of three (or) more dimensions. The exact limit depends on the compiler. C
allows multi-dimensional arrays. The general form of multi-dimensional arrays is as follows.

Syntax : data-type array-name[exp 1][exp 2]….[exp n];

Expressions with multiple subscripts refer to elements of “multidimensional arrays”. A
multidimensional array is an array whose elements are arrays.

 So Three-dimensional array is an array with two dimensions.

The general form of a three-dimensional array is as follows.

Syntax : data-type array name[exp 1][exp 2][exp 3];

Example : int a[3][4][2]={{{{2,4},{7,8},{3,4},{5,6}},
 {{7,6},{3,4},{5,3},{2,3}},

 {{8,9},{7,2},{3,4},{5,1}}}};

A three dimensional array is an array of arrays of arrays. In the above example, the
outer array has three elements, each of which is a two dimensional array of four one-
dimensional arrays.

In three -dimensional arrays, the array elements are stored in one continuous chain. The
arrangement of elements of a three-dimensional array in memory as shown below.

6.5. SUMMARY :

In this Chapter we have learned the An array is a data structure that can be used to
store a list of values of same data type. In C, the index to an array starts at 0. We can initialize
each individual element of an array after the declaration of the array, or you can place all
initial values into a data block surrounded by (and) during the declaration of an array. The
memory storage taken by an array is determined by the product of the size of a data type and
the dimensions of the array.

 0th 2-D array 1th 2-D array 2nd 2-D array

2 4 7 8 3 4 5 6 7 6 3 4 5 3 2 3 8 9 7 2 3 4 5 1

401 417 433

 CENTRE FOR DISTANCE EDUCATION 6.16 ACHARYA NAGARJUNA UNIVERSITY

6.6. KEY WORDS :

Dimension : A measure of spatial extent, especially width, height, or length.

Array : An array is a variable that can store multiple values.

Character array : A character array is a sequence of characters, just as a numeric array is a

sequence of numbers.

 Array storage : The Array Store is a store that provides an interface for loading and editing

an in-memory array and handling related events.

Memory : Memory in a computer is just a sequential set of "buckets" that can contain numbers,

characters, or boolean values

6.7. SELF ASSESSMENT QUESTIONS :

1. What is an array? Explain different types of arrays?

2. Write a program to read and display a two dimensional array?

3. Explain multidimensional arrays with example?

6.8. FURTHER READINGS :

1. Programming with C” by Byron C.Gotttfried.

2. “let us C” BY Yeshavanth kanethkar.

3. “working with C”BY Yeshavanth kanethkar.

4. “Programming in ANSI C” by E.Balagurusamy

5. “Sams Teach Yourself C “ by Tony Zhang.

6. “The Spirit of C” BY Henry Mullish.

LESSON - 7

S T R I N G S

AIMS AND OBJECTIVES :

The objectives of this lesson are to know about

 the concept of string

 the significance of strings

 various applications of string functions.

STRUCTURE OF THE LESSON :

7.1. String

7.2. Declaration and Initialization of String Variables

7.3. String Handling Functions

7.4. Summary

7.5. Key Words

7.6. Self Assessment Questions

7.7. Further Readings

7.1. STRING :

A string in C is simply an array of characters. The string can be defined as the one-
dimensional array of characters terminated by a null ('\0'). The character array or the string is
used to manipulate text such as word or sentences. Each character in the array occupies one
byte of memory, and the last character must always be 0. The termination character ('\0') is
important in a string since it is the only way to identify where the string ends. When we
define a string as char s[10], the character s[10] is implicitly initialized with the null in the
memory.

7.2. DECLARATION AND INITIALIZATION OF STRING VARIABLES :

String Declaration :

String is not a basic data type in C programming language. It is just a null terminated array of
characters. Hence, the declaration of strings in C is similar to the declaration of arrays.

Like any other variables in C, strings must be declared before their first use in C program.

Syntax of String Declaration : char string_name[SIZE_OF_STRING];

the above declaration, string_name is a valid C identifier which can be used later as a
reference to this string. Remember, name of an array also specifies the base address of an
array.

 CENTRE FOR DISTANCE EDUCATION 7.2 ACHARYA NAGARJUNA UNIVERSITY

SIZE_OF_STRING is an integer value specifying the maximum number of characters which
can be stored in this string including terminating null character. We must specify size of
string while declaration if we are not initializing it.

Examples of String Declaration

 char address[100];

 char welcome Message[200];

Initialization of Strings :

In C programming language, a string can be initialized at the time of declarations like any
other variable in C. If we don't initialize an array then by default it will contain garbage
value.

There are various ways to initialize a String Initialization of string using a character
array

char name[16] = {'T','e','c','h','C','r','a','s','h','C','o','u','r','s','e','\0'};

 or

char name[] = {'T','e','c','h','C','r','a','s','h','C','o','u','r','s','e','\0'};

In the above declaration individual characters are written inside single quotes('') separated by
comma to form a list of characters which is wrapped in a pair or curly braces. This list must
include a null character as last character of the list.

If we don't specify the size of String then length is calculated automatically by the compiler.

7.3. STRING HANDLING FUNCTIONS :

In C programming language provides a set of pre-defined functions called string handling
functions to work with string values. Whenever we want to use any string handling function
we must include the header file called string.h.

 The following are the basic string functions. All the string functions are prototyped in:
#include <string.h>.

strcmp Compares one string with another.

strcpy Copies a string to another string.

strlen Determines the length of a string.

strlwr Converts a string to lowercase.

strupr Converts a string to uppercase.

strcat Appends one string at the end of another.

strrev Reverses a string.

strdup Duplicates a string.

 PROGRAMMING WITH C & C++ 7.3 STRINGS

strcmp() Function :

This function compares two strings to find out whether the two strings are same or different.
The two strings are compared character by character. If the two strings are identical, function
returns a value zero. Otherwise it returns the numerical difference between the ASCII values
of the non-matching characters.

Example :
#include<stdio.h>
main()
 {

 char string1[]=”jerry”;

 char string2[]=”ferry”;

 int i,j,k;

 i=strcmp(string1,”jerry”);

 j=strcmp(string1,string2);

printf(“%d %d %d \n”,i,j,k);
}

Output : 0 4 -98

strcpy() Function :

This function copies the contents of one sting into another. The base address of the source
and target strings should be supplied to this function.

Example :

#include<stdio.h>
main()
 {

char string1[20],string2[20];

printf("\n Enter the two strings :\n ");

scanf(“%s%s”,string1,string2);

strcpy(string1,string2);

printf("\n %s”,string1);

getch();
}

Input :

Enter the two strings: Sai ram

Output : Sairam

strlen() Function :

 CENTRE FOR DISTANCE EDUCATION 7.4 ACHARYA NAGARJUNA UNIVERSITY

This function counts the number of characters present in a string.

Example :

#include<stdio.h>
main()

{
 char s[20],s1[20];

 int n1,n2;

 printf("\n Enter the two words:\n ");

 scanf(“%s%s”,s1,s2);

 n1=strlen(s1);

 n2=strlen(s2);

if(n1==n2)

 printf(“they are of equal size”);

else

 printf(“they are not equal”);
}

Input :

Enter the two words : Sai ram

Output :

They are of equal size

strlwr() Function :

 strlwr() function converts a given string into lowercase. Syntax for strlwr() function
is given below.char *strlwr(char *string);

 strlwr() function is non standard function which may not available in standard library
in C.

Example :

In this program, string “MODIFY This String To LOwer” is converted into lower case
using strlwr() function and result is displayed as “modify this string to lower”.

#include<stdio.h>
#include<string.h>
int main()

{

char str[] = "MODIFY This String To LOwer";

printf("%s\n",strlwr (str));

 PROGRAMMING WITH C & C++ 7.5 STRINGS

return 0;

}

Output :

modify this string to lower.

strupr() Function :

strupr() function converts a given string into uppercase.

Syntax for strupr() function is given below.

 char *strupr(char *string);

 strupr() function is non standard function which may not available in standard library in C.

Example :

In this program, string “Modify This String To Upper” is converted into uppercase using
strupr() function and result is displayed as “MODIFY THIS STRING TO UPPER”.

#include<stdio.h>
#include<string.h>
 int main()

{
 char str[] = "Modify This String To Upper";
 printf("%s\n",strupr(str));
 return 0;

}

Output :

MODIFY THIS STRING TO UPPER

strcat() Function :

This function concatenates the source string at the end of the target string. It is necessary
to place ‘\0’ into the target string, to make its end.

Example :
#include<stdio.h>
int main()

{
char string1[]=”spot”;

char string2[]=”buying”;

strcat(string1,string2);

printf(“%s”,string1);
}

 CENTRE FOR DISTANCE EDUCATION 7.6 ACHARYA NAGARJUNA UNIVERSITY

Output : spotbuying

strrev() Function :

This function reverses the string.

Example :

#include<stdio.h>
main()

{
char a[20],b[20];

int i,stringlength=0;

clrscr();

printf("\n Enter any string : ");

gets(a);

strrev(a);

printf("\n Reversed string is : ");

puts(a);
 }

Input :

 Enter any string : sairam

Output :

 Reverse string is : marias

strdup() Function :

 strdup() function in C duplicates the given string.

Syntax for strdup() function is given below.

char *strdup(const char *string);

 strdup() function is non standard function which may not available in standard library in C.

Example :

In this program, string “Raja” is duplicated using strdup() function and duplicated string is
displayed as output.

#include <stdio.h>
#include <string.h>
int main()

{
char *p1 = "Raja";
char *p2;
p2 = strdup(p1);

 PROGRAMMING WITH C & C++ 7.7 STRINGS

printf("Duplicated string is : %s", p2);
return 0;

}
Output :

Duplicated string is : Raja

A program to count the number of vowels present in a sentence.

Program Code :

include<stdio.h>
include<conio.h>
include<string.h>
 main()

 {
 char st[80], ch;
 int count = 0, i;
 clrscr();
 printf(“ \n Enter the sentence: \n”);
 gets(st);
 for(i=0; i<strlen(st); i++)

 switch(st [i])
 {

case ‘A’:
case ‘E’:
case ‘I’:
case ‘O’:
case ‘U’:
case ‘a’:
case ‘e’:
case ‘I’:
case ‘o’:
case ‘u’:
count ++;

 break;
}

 printf(“\n %d vowels are present in the sentence”, count);
 getch();

}

Output :

Enter the sentence : This is a book

5 vowels are present in the sentence.

Note :

 CENTRE FOR DISTANCE EDUCATION 7.8 ACHARYA NAGARJUNA UNIVERSITY

 When this program is executed, the user has to enter the sentence.

 Note that gets() function is used to read the sentence because the string has white
spaces between the words.

 The vowels are counted using a switch statement in a loop.

 Note that a count++ statement is given only once to execute it for the cases in the
switch statement.

 A program to count no of lines, words and characters in a given text.

Program Code :

include<stdio.h>
include<string.h>
include<conio.h>
 main()

 {
 char txt[250], ch, st[30];
 int ins, wds, chs, i;
 printf(“ \n Enter the text, type $ st end \n \n”);
 i=0;
 while((txt[i++]= getchar()) ! =’$’);
 i--;
 st[i] = ‘\0’;
 ins = wds = chs = 0;
 i=0;
 while(txt[i]!=’$’)

 {
 switch(txt[i])
 {

case ‘,’:
case ‘!’:
case ‘\t’:
case ‘ ‘:

{
wds ++;
chs ++;
break;

 }
case ‘?’:
case ‘.’:

 {
wds ++;
chs ++;
break;

}

 PROGRAMMING WITH C & C++ 7.9 STRINGS

 default:chs ++;
 break;

}
 i++;

}
printf(“\n\n no of char (incl.blanks) = %d”, chs);
printf(“\n No. of words = %d”, wds);
printf(“\n No of lines = %d”, ins);
getch() ;

}
Output :

Enter the text, type $ at end
What is a string? How do you initialize it? Explain with example.
With example : $
No of char : (inch. Blanks) = 63
No of words = 12
No of lines =1.

7.4. SUMMARY :

A string is a character array with a null character as the terminator at the last element.
A string constant is a series of characters by double quotes. It has discussed the concept
string. A string is an array of characters. We have briefly introduced the concepts of declaring
and initializing the strings. It has described the standard library string functions, which are
strlen(), strcpy(), strcmp(), and strcat().

7.5. KEY WORDS :

String : A string is a sequence of characters terminated with a null character ‘\0’.

String Dimension :

Strings are actually one-dimensional array of characters terminated by a null Character ‘\0’.

String library functions :

It is used to search whether a substring is present in the main string or not.

7.6. SELF ASSESSMENT QUESTIONS :

1. Define string?

2. Write the Declaration and Initialization of String Variables String?

3. Explain various string functions?

7.7. FURTHER READINGS :

1. “Programming with C” by Byron C.Gotttfried

2. “let us C” BY Yeshavanth kanethkar

 CENTRE FOR DISTANCE EDUCATION 7.10 ACHARYA NAGARJUNA UNIVERSITY

3. “working with C”BY Yeshavanth kanethkar

4. “Programming in ANSI C” by E.Balagurusamy

5. “Sams Teach Yourself C “ by Tony Zhang

6. “The Spirit of C” BY Henry Mullish.

LESSON - 8

FUNCTIONS

AIMS AND OBJECTIVES :

The objectives of this lesson is to

 explain the creation and utilization of programmer defined functions.

 discuss the importance of functions.

 how functions can divide the programming task into logically coherent

components.

 explain about how a function is defined and called.

STRUCTURE OF THE LESSON :

8.1. Functions : Defining Functions, Function Call

8.1.1. System defined functions

8.1.2. User Defined Functions

8.2. Advantages of Functions

8.3. Defining a Function

8.4. Function Call

8.5. Passing parameters

8.5.1. Call-by-value

8.5.2. Call-By-Reference

8.6. Summary

 8.7. Key words

8.8. Self Assessment Questions

8.9. Further Readings

8.1. FUNCTIONS : DEFINING FUNCTIONS FUNCTION CALL :

Functions :

A function is a self-contained program segment that carries out some specific, well-defined
task. It can be referred as a module or procedure or a subtask. A function itself is not a
program; rather it extends the ability of a program.

As C is a function-oriented language, it supports a rich set of functions in a sophisticated
way. Every C program starts with at least one function called main().There are two different
categories in functions, system defined and user defined functions.

 CENTRE FOR DISTANCE EDUCATION 8.2 ACHARYA NAGARJUNA UNIVERSITY

8.1.1. System defined functions :

 A system-defined function is a subprogram, which is prewritten in the compiler. There is a
library in C for system defined functions. For example, printf(), scanf(), clrscr(), getchar(),
etc.

8.1.2. User Defined Functions :

Sometimes, the user may require a function, which performs a specific task. In such cases, C
permits user-defined functions.

Every function has its own significance and provides a separate scope for variables. A
function requires three different types of statements to be specified by the user. They are

 Function prototype declaration

 Function Definition

 Function calling

As C supports top down approach in executing the programs, explicit declaration of the
functions are required in a program.

Every function requires definition. Literally the user will not be able to use without defining a
function.

Unless the user makes an explicit call to the function, the function declaration and definition
have no significance and they perform nothing.

Hence the above three statements are essential for implementing functions.

8.2. ADVANTAGES OF FUNCTIONS :

1. Program debugging is made easy if a C program contains functions.

2. Functions allow a larger task to be subdivided into several smaller tasks, so that they

can be managed easily.

3. The length of the source program can be reduced to a maximum extent using

functions.

4. The same function can be used for many programs once it is written.

5. Functions may increase program execution speed.

6. Functions improve optimum utilization of memory.

7. Functions are more reliable.

8.3. DEFINING A FUNCTION :

The general structure of a Function :

data-type function-name(data-type arg1, data-type arg2….. argn)

 {
 local variable declarations ;

 PROGRAMMING WITH C & C++ 8.3 FUNCTIONS

 body of function

 …………………….

return(expression);
 }
Function name :

Every function requires a name (function name) so that it can be referred or identified by the
user. Function names are unique in a program. While specifying names, make sure that the
name doesn’t posses any space between the characters.

Argument list :

A function may accept any number of values as input from the caller function in order to
perform the task assigned to it. Each value is referred as an argument or parameter. Usually
parameters are specified in the brackets ‘(‘, ‘)’.

Example : power(x,n)

quadratic(a,b,c)

Argument declaration :
Argument variables must be declared for their types, after the function header and before the
opening brace of the function body.

Example :
power(x,y)

int x;

float y;

 {
 .
 .
 .
 }

return() :

This is to specify the type of the value being returned by the function to its parent function or
caller function. The keyword return is not mandatory. It is the last statement of a function. If
at all, a function wants to send a value back to the caller, return statement may be kept in use.

return() can be declared in two ways :

syntax 1 : return;

It does, not return any value. It acts much as the closing brace of the program.

Example :
if(error)

 CENTRE FOR DISTANCE EDUCATION 8.4 ACHARYA NAGARJUNA UNIVERSITY

return;

syntax 2 : return(expression);

It returns the value of the expression.

Example :
mul(x,y)

int x,y;

{
int p;

p=x*y;

return(p);

}

8.4. FUNCTION CALL :

When a function is called, parameters in the called function are bounded to the corresponding
arguments supplied by the calling function. Before calling a function, it must be declared
with a prototype of its parameters inside the main().

 Functions with no arguments and no return values.

 Functions with arguments but no return values.

 Functions with arguments and return values.

Functions with no arguments and no return values :

In this category of function, the caller function does not send any argument to the function
and the called function does not return any value.

Example for this type of function is given below. Hear, the main() (calling function) calls two
functions namely printline() and value(). Upon call, the program control passes from the
calling function, and execution begins from the first executable statement of the called
function. The called function is executed until a return or closing brace of the function is
encountered, at which point the control passes back to the point after the function call. The
functions printline() and value() accepts no values and they also return no value to it.

 Example :

#include<stdio.h>

main()

 {

 /* call to printline() that accepts no arguments*/

 printline();

 /* call to value() that accepts no arguments*/

 PROGRAMMING WITH C & C++ 8.5 FUNCTIONS

 value();

 /*another call to printline()*/

printline();

 }

/* function 1 printline()*/

printline()

{

 int i;

 for(i=0;i<40;i++)

 {

 printf(“-“);

}

}

/* function 2 value() */

value()

{

 int num1,num2;

 int result;

printf(“enter the values of num1 and num2\n”);

 scanf(“%d%d”,&num1,&num2);

 result=num1/num2;

 printf(“ the result is %d\n”,result);

}

Functions with arguments but no return values :

In this category of function, the caller function sends one or more values to called function
but in return the called function does not return any value.

Example for this type of function is given below, the function interest() is called from main()
and it accepts three arguments. The function interest () is supplied with three arguments
namely principal, rate, and period. This function calculates the simple intrest based on the
values sent to it, but it does not return the value of simple intrest to the calling function.
When the function is called from the calling function, control passes to the function, the
result is evaluated, and later displayed.

Example :

#include<stdio.h>

main()

 CENTRE FOR DISTANCE EDUCATION 8.6 ACHARYA NAGARJUNA UNIVERSITY

 {

/* function prototyping */

float intrest(float,float,int);

float principal,rate;

int period;

printf(“enter principal, amount and intrest\n”);

scanf(“%f%f” ,&principal,&rate);

printf(“enter the number of years\n”);

scanf(“%d”,&period);

intrest(principal,rate,period);

}

float intrest(float p, float r, int n)

 {

float simple;

simple = (p*n*r)/100;

 printf(“the simple interest for a period of %d years is %f”,n,simple);

}

Functions with arguments and return values :

In this category of function, the caller and called functions send values to one another.

Example for this type of function is given below, it illustrates how the function square()
accepts the number and manipulates the square of that number. When this function is called
from main(), the control passes to the called function, square of the number is evaluated and
the result is returned to the environment in which the function is called.

Example :

#include<stdio.h>

main()

{

int number;

float result;

/* function prototyping */

float square(int);

printf(“enter the number whose square has to be found\n”);

scanf(“%d”,&number);

result=square(number);

 PROGRAMMING WITH C & C++ 8.7 FUNCTIONS

printf(“the square root of the number is %f”,result);

}

float square(int num)

{

float res;

res=num*num;

return(res);

}

8.5. PASSING PARAMETERS :

Arguments to a function are usually passed in two ways.

1. Call-by-value

2. Call-by-reference.

8.5.1. Call-by-value :

In call by value, a copy of the variable is made and passed to the function as argument. With
this method, changes made to the parameters of the function have no effect on the variables,
which called the function, because the changes are made only to the copies.

Example :

A Program for swapping of two integers.

#include<stdio.h>

main()

 {

 int a=1,b=2;

swap(a,b);

 }

swap(int a,int b)

 {

int temp;

temp=a;

a=b;

b=temp;

printf(“a=%d \t\t b=%d”,a,b);

 }

 CENTRE FOR DISTANCE EDUCATION 8.8 ACHARYA NAGARJUNA UNIVERSITY

8.5.2. Call-By-Reference :

Call-by-reference is a method in which the address of each argument is passed to the
 function. By this method, the changes made to the parameters of the function will affect
the variable, which called the function.

Example:

A Program for swapping of two integers.

#include<stdio.h>

main()

 {

int a=1,b=2;

swap(&a,&b);

printf(“a=%d \t\t b=%d”,a,b);

}

swap(int *a,int *b)

{

int temp;

temp = *a;

*a = *b;

*b= temp;

}

8.6. SUMMARY :

In this chapter we have learned the A function declaration includes to a function that is
defined elsewhere, and specifies what type of arguments and values are passed to and
returned from the function as well. A function definition saves the memory space and defines
what the function does, as well as the number and type of arguments passed to a function.
The return statement used in a function definition returns a single whose type must be
matched with the one declared in the function declaration.

 8.7. KEY WORDS :

 Function : A function is a block of code which only runs when it is called

 Function call : It is called inside a program whenever it is required to call a
function.

 Function categories : There are two types of function in C programming: Standard
library functions. User-defined functions.

 Function prototype : A function prototype is simply the declaration of a function that
specifies function's name, parameters and return type.

 PROGRAMMING WITH C & C++ 8.9 FUNCTIONS

8.8. SELF ASSESSMENT QUESTIONS :

1. Define a function?

2. Explain advantages of functions?

3. Explain different categories of functions?

4. What is meant by call-by-value? Explain with example.

5. What is meant by call-by-reference? Explain with example.

8.9. FURTHER READINGS :

1. “Programming with C” by Byron C.Gotttfried

2. “let us C” BY Yeshavanth kanethkar

3. “working with C”BY Yeshavanth kanethkar

4. “Programming in ANSI C” by E.Balagurusamy

5. “Sams Teach Yourself C “ by Tony Zhang

6. “The Spirit of C” BY Henry Mullish.

LESSON - 9

INTRODUCTION TO OBJECT ORIENTED

PROGRAMMING THROUGH C++

AIMS AND OBJECTIVES :

The objectives of this lesson is to

 Difference between the procedure oriented programming and object oriented

paradigm.

 explain the basic concepts of object oriented programming.

 discuss the benefits and applications of object oriented programming.

 explain the structure of a C++ program, writing a sample C++ program,

compiling and running of a CPP program.

STRUCTURE OF THE LESSON :

9.1 Introduction to OOP and its basic features

9.1.1 Procedure Oriented Programming

9.1.2 Object Oriented Programming

9.2 Concepts of OOPs

9.2.1 Benefits Of OOPS

9.2.2 Applications of OOPS

9.3 C++ Program structure

9.3.1 A Sample C++ Program

9.3.2 Compiling and Running

9.3.3 Testing and Debugging

9.3.4 Applications of C++

9.4 Summary

9.5 Key words

9.6 Self- Assessment Questions

9.7 Further Readings

9.1 INTRODUCTION TO OOP AND ITS BASIC FEATURES :

C++ is an object oriented programming language. It was initially named as C with
classes. However in 1983, it was renamed as C++. C++ was developed by Bjarne Stroustrup
at AT& T Bell laboratories, New Jersey, U.S.A. It is an enhancement of the C programming

CENTRE FOR DISTANCE EDUCATION 9.2 ACHARYA NAGARJUNA UNIVERSITY

language with the major addition of class construct feature of Simula67. It was built upon C
and hence all standard C features are also available in C++. Thus C++ is the superset of C.
Almost all C programs are also C++ programs.

The three important facilities that C++ have are C with classes, function overloading
and operator overloading. These features help to create abstract datatype, inheritance from
existing datatype and polymorphism. C++ allows the programmer to build programs with
clarity, extensibility and ease of maintenance.

9.1.1 Procedure Oriented Programming :

Procedure oriented programming is viewed as a sequence of things to be done, such
as reading, calculating, printing etc. A number of functions are written to accomplish the
tasks. The primary importance is given to functions and little is given to data that are being
used by various functions.

Data is placed as global, so that they may be accessed by all the functions. Each
function can have its own data. Global data can be used by any function so that it is difficult
to identify what data is used and by which function. Procedure Oriented programming does
not model real world problems very well.

Some important Characteristics are :

 Importance is given in doing the algorithms.

 Large programs are divided into smaller programs known as functions Most of

the functions share global data.

 Data move over the system from function to function freely.

 Functions transform the data from one form to another.

 Employs top-down approach in program design.

9.1.2 Object Oriented Programming :

Object oriented programming is an approach that provides a way of modularizing the
programs by creating partitioned memory area for both data and functions that can be used as
templates for creating copies of such modules in demand.

 Global data Global Data

Function 1
Local Data

Function 2
Local Data

Function 3
Local Data

PROGRAMMING WITH C & C++ 9.3 INTR. TO OOP THROUGH C++

OOPS treats data as a critical element in the program development and does not allow
it to freely flow around the system.

 It ties data more closely to the function that operates on it and protects it from
accidental modifications from outside functions. OOP allows us to decompose the problem
into number of entities called objects and build data and function around them. Data of an
object can be accessed only by functions associated with that object. Functions of one object
can access the functions of another object.

Important Features :

 Importance is given to data then the functions

 Programs are divided into objects

 Data Structures characterize the objects.

 Functions that operate on the data of the object are tied together in the data

structure.

 Data is hidden and cannot be accessed by the external functions.

 Objects may communicate with each other through functions.

 New data and functions can be easily added.

 Follows bottom-up approach is used in the program design

Object 1 Object 2

Data Data

Functions Functions

 Object 3

 Data

 Functions

9.2 CONCEPTS OF OOPS :

The major Concepts ofObject Oriented Programming are :

1. Class

2. Object

CENTRE FOR DISTANCE EDUCATION 9.4 ACHARYA NAGARJUNA UNIVERSITY

3. Abstraction

4. Encapsulation

5. Data Hiding

6. Inheritance

7. Reusability

8. Polymorphism

9. Virtual Functions

10. Message passing

1. Class :

Class is an abstract data type (user defined data type) that contains member variables
and member functions that operate on data. It starts with the keyword class. A class denotes a
group of similar objects.

Eg. : class employee

 {

 int empno;

 char name[25],desg[25];

 float sal;

 public:

 void getdata ();

 void putdata ();

 };

2. Object :

An object is an instance of a class. It is a variable that represents data as well as
functions required for operating on the data. They interact with private data and functions
through public functions.

Eg. : employee e1, e2;

 In the above example employee is the class name and e1 and e2 are objects of that class.

3. Abstraction :

Abstraction refers to the process of concentrating on the most essential features and
ignoring the details. There are two types of abstraction.

i) Procedural Abstraction

ii) Data Abstraction

PROGRAMMING WITH C & C++ 9.5 INTR. TO OOP THROUGH C++

i) Procedural Abstraction : Procedural abstraction refers to the process of using user-
defined functions or library functions to perform a certain task, without knowing the
inner details. The function should be treated as a black box. The details of the body of
the function are hidden from the user.

ii) Data Abstraction : Data Abstraction refers to the process of formation of user
defined data type from different predefined data types.

Eg : structure, class.

4. Encapsulation :

Encapsulation is the process of combining data members and member functions into a
single unit as a class in order to hide the internal operations of the class and to support
abstraction.

5. Data Hiding :

All the data in a class can be restricted from using it by giving some access levels
(visibility modes). The three access levels are private, public, protected.

Private data and functions are available to the public functions only. They cannot be
accessed by the other part of the program. This process of hiding private data and
functions from the other part of the program is called as data hiding.

6. Inheritance :

Inheritance is the process of acquiring (getting) the properties of some other class.
The class whose properties are being inherited is called as base class and the class which is
getting the properties is called as derived class.

7. Reusability :

Using the already existing code is called as reusability. This is mostly used in
inheritance. The already existing code is inherited to the new class. It saves a lot of time and
effort. It also reduces the size of the program.

8. Polymorphism :

Polymorphism means the ability to take many forms. Polymorphism allows to take
different implementations for same name.

 poly many

 morphism forms

 Base Class

 Derived Class

CENTRE FOR DISTANCE EDUCATION 9.6 ACHARYA NAGARJUNA UNIVERSITY

There are two types of polymorphism, Compile time polymorphism and run time
polymorphism. In Compile time polymorphism binding is done at compile time and in
runtime polymorphism binding is done at runtime.

Eg.: Function overloading, operator overloading.

Function Overloading : Function overloading is a part of polymorphism. Same function
name having different implementations with different number and type of arguments.

Operator Overloading : Operator overloading is a part of polymorphism. Same operator can
have different implementations with different data types.

9. Virtual Functions :

Virtual functions are special type of functions which are defined in the base class and
are redefined in the derived class. When virtual function is called with a base pointer and
derived object then the derived class function will be called. A function can be defined as
virtual by placing the keyword virtual for the member function.

10. Message Passing :

An object-oriented program contains a set of objects that communicate with one
another. The process of object oriented programming contains the basic steps :

1. Creating classes

2. Creating objects

3. Communication among objects

This communication is done with the help of functions (i.e., passing objects to functions).

9.2.1 Benefits Of OOPS :

 Through inheritance, we can eliminate redundant code and extend the use of

existing classes.

 Programs can be built from the standard working modules that communicate

with one another, rather than writing the code from scratch. This leads to saving

of development time and higher productivity.

 Principle of data hiding helps the programmer to build secured programs. It is

possible to have multiple instances of objects to co-exist without any

inheritance.

 Easy to partition the work in project based objects.

 It is possible to map objects in the problem domain to those objects in the

program.

 Software complexity can be easily managed.

PROGRAMMING WITH C & C++ 9.7 INTR. TO OOP THROUGH C++

 Message passing techniques for communication makes the interface descriptions

with external systems much simpler.

 The data-centred design approach enables us to capture more details of a model

in implementable form.

9.2.2 Applications of OOPS :

The promising areas for application of OOP includes :

 Real-time systems

 Simulation and modeling

 Object-oriented databases

 Hypertext. Hypermedia and experttext

 Al and expertsystems

 Neural networks and parallel programming

 Decision support and Automation system

 CIM/CAM/CAD systems

9.3 C++ PROGRAM STRUCTURE :

C++ program contains 4 sections. These may be placed in separate code files and then
compiled independently or jointly. A program is commonly organized into 3 separate files.
The class declarations are placed in a header file and the definitions of member functions go
into another file.

This helps the programmer to separate the abstract specification of the interface (class
definition) from the implementation details (member function definition). The main program
is placed in a third file which includes the previous two files as well as any other files
required.

Include files

Class Declaration

CENTRE FOR DISTANCE EDUCATION 9.8 ACHARYA NAGARJUNA UNIVERSITY

9.3.1 A Sample C++ Program :

//sum of two integers

#include <iostream.h> //include header file

int main()

 {

 int x,y,sum;

 cout<<”Enter any 2 numbers: ”;

 cin>>x>>y;

 sum = x + y;

 cout<< “The given numbers are ”;

 cout<<x;

 cout<<” and ”;

 cout<<y;

 cout<<”\n”;

 cout<<”Their sum is ”<<sum<<”\n”;

 return 0;

 } //End of example

Output :

 Enter any 2 numbers : 4 5

 The given numbers are 4 and 5

 Their sum is 9

In order to make a program understandable, some explanatory notes is included at key
places in the program. Such notes are called comments. In C++ the symbols // are used to
indicate the start of the comments. The comment starts with a // and terminate at the end of
the line. A comment may start any where in the line, and whatever follows till the end of the
line is ignored. // is a single line comment.

Example :

 // This is a
 // sample C++

// program

The C comment symbols /*-------*/ is also valid and are suitable for multiline comments.
Either or both of the styles can be used in the programs.

Example : /*This is a sample C++ program*/

The program begins with the line :

PROGRAMMING WITH C & C++ 9.9 INTR. TO OOP THROUGH C++

#include<iostream.h>

This is called include directive. It tells the compiler where to find information about
certain items that are used in your program. iostream is the name of the library that contains
the definitions of the routines that handle input from the keyboard and output to the screen.
iostream.h is the file that contains the information about the library.

Directives begin with the symbol # at the very start of the line and no space is
included between # and include. A C++ program is a collection of functions. The above
example contains one function, main(). The program starts with

int main()
 {
 and ends with
 return 0;
 }

As the return type of the function is integer, 0 is returned here. The lines between the
beginning and ending {} are the heart of the program.

 int x,y,sum;

This line is called variable declaration. The variable declaration tells the computer
that x,y and sum are the name of the three variables used in the program. int word tells the
computer the numbers named by these variables are integers.

The remaining lines are the instructions that tell the computer to do the corresponding
work. These instructions are called executable statements or statements. Every statement
should end with a semicolon.

Most of the statements begin with the word cout or cin. These statements are the input
and output statements. The << and >> arrows are the operators which tell the direction in
which the data is moving.

The operator << is called the insertion operator or put to operator. It inserts (or sends)
the contents of the variable on its right to the objects on its left. Cout is a predefined object
that represents the standard output stream in C++. Here the standard o/p stream represents the
screen. << operator can be overloaded.

Ex: cout<<”Enter two numbers”;

 cout<<sum; Screen

 Object Insertion operator Variable

……………..

………………

<< sum cout

CENTRE FOR DISTANCE EDUCATION 9.10 ACHARYA NAGARJUNA UNIVERSITY

The operator >> is known as extraction or get from operator. It extracts or takes the
value from the keyboard and assigns it to the variable on its right. >> operator can also be
overloaded.

Eg.: cin>>x ;

 Object Extraction operator Variable

 Keyboard

Cascading of I/O operators :

The multiple use of << in one statement is called cascading. This is known as
cascading of output operator.

Eg.: cout<<”Their sum is”<<sum<<”\n”;

This statement sends the string “Their sum is” to cout and then sends the value of
sum, then the newline.

Similarly, >> operator can be cascaded. This is known as cascading of input operator.

Eg.: cin>>x>>y;

sum = x+y;

cout<<

This is the computational statement. The values of x and y are summed up with +
operator and the value is stored in the variable sum.

 cout<<”Their sum is ”<<sum<<”\n”;

“\n” contained at the end of the output statement tells the computer to start a newline after
writing the text.

9.3.2 Compiling and Running :

C++ program is typed in using a text editor. There are different text editors. Turbo
C++ provides a built-in editor and a menu bar including the options such as File, Edit,
Compile and Run. The source file is created and saved under the File Option and can be
edited under Edit option. The program is compiled under Compile Option and Run using Run
option.

cin >> x

PROGRAMMING WITH C & C++ 9.11 INTR. TO OOP THROUGH C++

 Compilation of the program will produce a machine-language translation of the
source code, called the object code. The object code must be linked (combined) with the
object code for routines (input and output routines) that are already written. Run option
executes the program. If there are no errors in the program, then compiling, linking and
running will go smoothly. However, errors may occur which has to be rectified and executed.

9.3.3 Testing and Debugging :

A mistake in the program is usually called a bug, and the process of eliminating bugs
is called debugging. There are three kinds of programming errors. They are

 Syntax errors

 Runtime errors and

 Logical errors

The errors that are caused due to the violation of syntax (grammar rules) of the
programming language are called syntax errors. E.g.: Omitting semicolon at the end of the
statement. These errors can be found during compilation.

There are certain kinds of errors that the computer system can detect only when the
program is run. These are run-time errors. Eg:If a computer attempts to divide a number by
zero.

There are certain kinds of errors, which cannot be identified during compilation. The
program is run successfully but the output is wrong. This is due to a mistake in the logic of
the program. These are known as logical errors.

Eg.: By mistake, using + instead of * during addition of two numbers.

9.3.4 Applications of C++ :

 C++ is a versatile language for handling very large programs.

 C++ is suitable for virtually any programming task including development of

editors, compilers, databases, communication systems and any complex real life

application systems.

 Since C++ allows us to create hierarchy-related objects. We can build special

object oriented libraries which can be used later by many programmers.

 C++ programs are easily maintainable and understandable.

9.4. SUMMARY :

 Procedure oriented programming follows a Top Down approach where the problem is

viewed as sequence of tasks. Functions are used to implement it.

 To overcome the drawbacks, such as free movement of data around the program and

CENTRE FOR DISTANCE EDUCATION 9.12 ACHARYA NAGARJUNA UNIVERSITY

as it is difficult to model real world problems, object oriented programming is

introduced.

 Object oriented programming follows a Bottom Up programming approach and it

does not allow data to move freely.

 The different concepts of OOPS like class, object, encapsulation, abstraction,

inheritance, polymorphism, dynamic binding, message passing are briefly discussed.

 Advantages and applications of OOPS are discussed.

 The structure of a C++ program, writing a sample program, compiling, debugging and

running of the programs are discussed.

 The applications of C++ are covered.

9.5 KEY WORDS :

 Object : An Object is an instance of a Class.

 Class : A Class is a fundamental block of a program that has its own set of methods and

variables.

 Data abstraction : Data abstraction is the reduction of a particular body of data to a

simplified representation of the whole.

 Encapsulation : In general, encapsulation is a process of wrapping similar code in one

place.

 Inheritance : Inheritance is a method through which one class inherits the

properties from its parent class.

 Polymorphism : The same entity (function or object) behaves differently in different

scenarios.

 Dynamic binding : If a body of the method is bonded to a method call at runtime then

it is called dynamic binding or late binding.

9.6 SELF ASSESSMENT QUESTIONS :

1) Define Procedure oriented programming?

2) Define object oriented programming?

3) What is the difference between object oriented programming and procedure oriented

programming?

4) Write the concepts of object oriented programming?

PROGRAMMING WITH C & C++ 9.13 INTR. TO OOP THROUGH C++

9.7 FURTHER READINGS :

1. Object-oriented programming with C++ by E. Bala Gurusamy

2. Problem solving with C++ by Walter Savitch

3. Mastering C++ by K.R.Venugopal, Rajkumar Buyya, T.Ravi Shankar.

LESSON - 10

CLASSES AND OBJECTS

AIMS AND OBJECTIVES :

This objectives of this lesson are to

 Explain the concept of classes and objects in C++.

 Define a class and member functions in two different ways in C++ program.

 Know how the memory allocation takes place for objects.

STRUCTURE OF THE LESSON :

10.1 Introduction To Classes And Objects

10.2 Defining A Class

10.3 Sample C++ Program Using Class

10.4 Friend Functions

10.5 Static Functions

10.6 Summary

10.7 Key words

10.8 Self Assessment Questions

10.9 Further Readings

10.1 INTRODUCTION TO CLASSES AND OBJECTS :

A class is a container that consists of member variables and member functions. Which
operate on data. C++ enables you to organize data in the form of templates, which contain
attributes and behaviours defined in a C++ program.

A class is based on the encapsulation concept, which ensures that a class hides
different attributes and behaviours from the outside world. Figure 10.1 shows that the ABC
class contains X, Y and Z attributes and the Start and End behaviours.

 ABC Name of the Class
 X

 Y Attributes

 Z

 Start Behaviours

 End

Figure 10.1 Concept of Class

 CENTRE FOR DISTANCE EDUCATION 10.2 ACHARYA NAGARJUNA UNIVERSITY

A class defined in a C++ program consists of the following concepts :

 Class Name : It is used to identify a class and its scope within a C++ program.

 Attribute: It used to store data or values that are provided by a user.

 Behaviour: It is used to perform operations that manipulate the data contained in

a class.

For example, there is a class, auto, defined in a program that describes its attributes
and the behaviours that interact with its attributes. Figure 10.2 shows the structure of the auto
class.

 Auto Class- Name

 Model No

 Name Data - Members

 Color

 DOM

 Starting Member - Functions

 Running

Figure 10.2 The Auto Class

C++ also provides a feature that enables you to use a class that is defined in some
other program. This feature helps you develop better and efficient software programs, In
C++, an object, which is also called an instance of a class, contains a copy of data defined in
the class. Figure 10.3 shows the objects such as chair, table and sofa for the furniture class.

 Class

 Furniture

 Chair Table Sofa

 Instances or Objects

Figure 10.3 Classification of Objects

 PROGRAMMING WITH C & C++ 10.3 CLASSES AND OBJECTS

In the furniture class, which contains objects such as chair, table and sof variables for
each object need not be declare separately. Each object shares member variables such as
name, colour, type and no. of legs defined with other objects of the class. Figure 10.4 shows
how an object shares data-members.

 Furnirure class name
 Name
 Color Data members
 Type
 Making
 Moving Member function
 Painting

Copy of Data Members

 Name Name Name
 Color Color Color
 Type Type Type
 No. of legs No. of legs No. of legs

 Figure 10.4 Example of Class

10.2 DEFINING A CLASS :

In C++, developers can define a class by specifying data-members and member-
functions according to the requirements. The following program shows how you define a
class in C++.

#include <iostream.h>

#include <conio.h>

class test

{

private:

int a,b,c;

public:

//Member Function for accepting values from the user.

 void enterdata()

{

cout<<endl<<"Enter two integer values";

 CENTRE FOR DISTANCE EDUCATION 10.4 ACHARYA NAGARJUNA UNIVERSITY

cin>>a>>b;

//Member Function for displaying values.

}

void printdata()

{

c=a+b;

cout<<endl<<"The addition of two numbers is:="<<C;

}

};

void main()

{

clrscr();

test t; // declaration of object.

t.enterdata();

t.printdata();

getch();

}

In the above program a test class is defined that contains three integer variables a. b
and e. These variables are called the member variables of the class test. The class test also
contains two member functions, which are enterdata() and printdata(). The enterdata()
member function accepts two integer values from the user as input and stores them in integer
variables a and b. The class also contains another member function printdata() that is used to
compute the sum of the integer values, which have been provided as input by a user and print
the result as output. Figure 10.5 shows the output of the above program.

Enter two integer values 12 16

The addition of two numbers is = 28

10. 3 SAMPLE C++ PROGRAM USING CLASS :

The main component of a C++ program is class, which allows you to combine data
and functions related to different real-world objects to form a single entity. Consider the
following C++ program to understand the use of class for maintaining records of students.

 PROGRAMMING WITH C & C++ 10.5 CLASSES AND OBJECTS

#include <iostream.h>
#include <conio.h>

#include <iomanip.h>

class student

{

int stdroll;

float percent;

public:

void getdata ();

void display ()

{

cout<< student Rollno: <<stdroll<<endl;

cout<< Student Percent: <<setprecision(2) <<percent;

}

};

void student :: getdata ()

{

cout<<"Enter student rollno:=";

cin>>stdroll;

cout<<"Enter student percentage:=";

cin>>percent;

}

void main()

{

clrscr();

student std;

std.get.data():

std.display();

getch();

}

 CENTRE FOR DISTANCE EDUCATION 10.6 ACHARYA NAGARJUNA UNIVERSITY

In the above program code, the class student contains two private me variables and
two public member functions. The two private member variables of class student are stdroll
and percent that store the student rollno and percentage achieved by a student. Figure 10.7
shows the output of the above program.

Enter student rollno = 121

Enter student percentage = 657.897

student Rollno : 121

Student Percent : 657.9

10.4 FRIEND FUNCTIONS :

Friend functions allow you to access private and protected members of a class from
outside the class. To do this, you have to declare functions as friends in a class. You can
create an object of the class in the friend function to access the private and protected
members of the class.

#include<iostream.h>
#include<conio.h>

class integer

{

int a,b;

public;

friend integer enter_val();

void print_val()

{

cout<<"Value of nl is "<<<<endl;

cout<<"Value of n2 is "<<b;

 }

 }

integer enter_val()

{
integer n;
cout<<"enter value for a and b;";

cin>>n.a>>n.b;

return n;

}

 PROGRAMMING WITH C & C++ 10.7 CLASSES AND OBJECTS

void main()

{

clrscr();

integer nl-enter_val();

n1.print_val();

getch();

}

The above program shows the output of the friend function as below.

enter value for a and b : 2

4

Value of n1 is 2

Value of n2 is 4

10.5 STATIC FUNCTIONS :

It is used to access the static attributes and provides direct accessibility of attributes
by class-name because in OOPS concept you can access behaviours of a class by the object of
the class.

10.6 SUMMARY :

In this chapter you learned about classes and objects. Classes are the user-defined data
types that contain member variables and member functions, which operate on data, and you
studied a sample C++ program using class.

10.7 KEY WORDS :

 Class : A Class is a fundamental block of a program that has its own set of methods and
variables.

 Variables : Variables are the containers for storing data values.

 Simple program : C++ is an object-oriented programming language which gives a
clear structure to programs and allows code to be reused, lowering development costs.

 Friend function : A friend function in C++ is defined as a function that can access
private, protected and public members of a class.

 Static function : It is a member function that is used to access only static data
members. It cannot access non-static data members not even call non-static member
functions.

 CENTRE FOR DISTANCE EDUCATION 10.8 ACHARYA NAGARJUNA UNIVERSITY

10.8 SELF ASSESSMENTQUESTIONS :

1. How will you define a class and object in C++.with an example program?

2. Write a properties on class and object?

3. Explain simple C++ program structure?

4. Discuss about friend function and static function.

10.9 FURTHER READINGS :

1. Schildt, H., The Complete Reference C++,. New Delhi: Tata McGraw-Hill, 2005.

2. Balaguruswamy, E., Object-oriented Programming in C++. New Delhi: Tata

McGraw-Hill, 2006.

CHAPTER - 11

CONSTRUCTORS, DESTRUCTORS AND

OPERATORS

AIMS AND OBJECTIVES :

The objectives of this lesson are to learn about the usage of

 constructors,

 dynamic initialization of objects,

 copy constructors,

 dynamic constructors and

 destructors.

STRUCTURE OF THE LESSON :

11.1 Constructors

11.1.1 Properties of constructors

11.1.2 Creating a constructor

11.1.3 Defining a constructor

11.1.4 Parameterized constructors

11.1.5 Multiple constructors in a class

11.1.6 Constructors with default arguments

11.2 Dynamic initialization of objects

11.2.1 Dynamic Constructor

11.2.2 Dynamic Allocation

11.2.3 Dynamic Deallocation

11.3 Destructors

11.4 Operators

11.5 Summary

11.6 Key words

11.7 Self Assessment Questions

11.8 Further Readings

CENTRE FOR DISTANCE EDUCATION 11.2 ACHARYA NAGARJUNA UNIVERSITY

11.1 CONSTRUCTORS :

Constructors in C++ are special member functions of a class and have the same name as
the name of the class. Constructors are functions, which are invoked whenever a new instance of
a class is created. They are often used to initialize the member variables of a class. Constructors
may also have parameters. Such constructors are called parameterized constructors. If a
constructor has parameters, then the parameter list should be matched to the definition of the
constructor. There can be many overloaded constructors inside a class. However the constructors
must have different sets of parameters.

11.1.1 PROPERTIES OF CONSTRUCTORS :

A constructor, defined in a class, has the following properties:

 It has the same name as the name of the class.

 It does not return any values.

 Constructors are basically functions, which are invoked first when a class is
initialized.

 Constructors are used to initialize an object, when it is created.

 Constructors cannot be invoked explicitly as if they were regular member functions.
These are only executed when a new object of a class is created.

 Constructors are invoked automatically when the object is created.

 Each object of the class that has a constructor should be initialized before it is used.

 Constructors can be defined as private or public. The private constructorsare
accessible only to member functions, but the public constructors are available to all
functions.

 Constructors cannot be inherited, though a derived class can invoke aconstructor of
a base class.

 You can overload constructors in C++. Overloaded constructors differ inthe number
and type of arguments that they can accept.

 It can be used explicitly to create new objects of its class type.

 Constructors cannot be virtual.

11.1.2 CREATING A CONSTRUCTOR :

A constructor is created with the same name as that of the class. A constructor is declared
in the class definition and can be defined in the class or outside the class definition. The
following code shows the syntax for creating a constructor in a class.

 PROGRAMMING WITH C & C++ 11.3 CONSTRUCTORS & OPERATORS

Class class _name

{

private:

 // private member

public:

class_name() // constructor

 {

 // constructor initialization

}

//other class member

};

The above code shows two types of member variables, public and private. Private
member variables are accessible only in the class but the public construct class_name() is
accessible outside the class.

11.1.3 DEFINING A CONSTRUCTOR :

You can define a constructor in a class or outside a class. When you constructor within a
class then both the definition and the declaration of the constructor is specified. To define a
constructor outside a class, you can use the following syntax : define

class_name::constructor()

{

 // Constructor definition

}

Consider a class with the name X. You can define a constructor with the name X which is

same as the name of the class. To define a constructor with the name X outside the class
definition, you can use the scope resolution operator represented by the following code shows
how to define a constructor X outside the class definition.

CENTRE FOR DISTANCE EDUCATION 11.4 ACHARYA NAGARJUNA UNIVERSITY

X::X()
{

 //Constructor definition

}

11.1.4 PARAMETERIZED CONSTRUCTORS :

A constructor may or may not have parameters. If a constructor has parameters then it is
called parameterized constructor, else it is called a default constructor with no parameters. A
default construction in a class can be defined as given below :

class class_name

{

 class_name(); // Default constructor

 { }

};

A parameterized constructor with three parameters in a class can be defined in two ways.

The first way to define a parameterized constructor is as follows :

class class_name

{

 class_name(float, int, char) // Parameterized constructor

 { }

};

Another way to define a parameterized constructor is as follows :

class class_name

{

 class name (float x, int y, char a)

 { } //Parameterized constructor

 { }

};

 PROGRAMMING WITH C & C++ 11.5 CONSTRUCTORS & OPERATORS

Consider the following program to understand parameterized constructor in a class

#include <iostream>

clase paracons

{

int a, b;

public:

paracons (int i, Int j)

{ //constructor definition in a class

a=i;

b=j;

}

void show()
{

 ccont<<a<< “ “<<b;

}
};
int main()

{

Paracons obj (3,4);

obj.show();

return 0;
}

int main()
{

paracons obj (3, 4); ob).show();
return 0;

}

CENTRE FOR DISTANCE EDUCATION 11.6 ACHARYA NAGARJUNA UNIVERSITY

The paracons class creates a parameterized constructor with two integer parameters. To
invoke the paracons constructor in the main function, you need to pass two integer parameters.
Figure below shows the output of the above program.

3 4

11.1.5 MULTIPLE CONSTRUCTORS IN A CLASS :

A class can contain multiple constructors but all the constructors must have different
parameters. When you invoke a particular constructor, the parameters passed to the constructor
must be in the same format as the parameter specified in the declaration of the constructor that is
to be invoked. The following program shows how to use multiple constructors in C++.

#include <iostream>
#include <cstdlib>

 using namespace std:

class mulcons

{

double a ;

public:

mulcons (int x) {

a=x;

}

mulcons (double x)

 {

 a = x;

double showa ()

{
 return a;

}
};

int main()

{

 PROGRAMMING WITH C & C++ 11.7 CONSTRUCTORS & OPERATORS

mulcons obj1= 2;
mulcons obj2=123.123;
cout << "obj1 “: << obj1.showa() << end1;
cout << "obj2 “: << obj2.showa() << end1;
return 0;

}

The mulcons class creates two constructors with integer and float parameters. You must create
two objects of the mulcons class to invoke the constructors.The obj1 object invokes the showa()
function to display the data from the constructor having the integer parameter. The obj2 object
displays the data from constructor having the float parameter. Figure below shows the output of
the program.

Obj1 : 2

Obj2 : 123.123

11.1.6 CONSTRUCTORS WITH DEFAULT ARGUMENTS :

Default arguments in a constructor are formal parameters with values defined at the time
of declaration. Values for a constructor are specified when invoking object does not supply an
actual parameter value. Actual parameter override the default values, when an object specifies
the actual values to invoke a constructor. The following program code shows how to assign a
default parameter to constructors.

#include <iostream.h>

class defitarg

{

Privaces ;

int e;

int b;

public:

// Default Parameters given to al and a2 are 0 and 1 respectively.

defltargfint al-0, int a2=1)

{

CENTRE FOR DISTANCE EDUCATION 11.8 ACHARYA NAGARJUNA UNIVERSITY

a=al;

b=a2;

// Displays the Effect of using Default Constructors.

void display()

{

cout<<<<<<b<<endl;

}

};

int main()
{

deflcarg a(1,2); // Here a1=1 a2=2

defltarg b;// Here al=0 a2=1

defltarg c(3); //Here a1=3 a2=1

a.display(); // 1-2

h.display(); // 0-1

c.display(); // 3-1

return 0;

}

In the above program, the defltarg class creates a constructor with two parameters, which
have default values as zero and one. The defltarg class has three objects as a, b and c. The object
a initializes the constructor with two parameter values, which overwrite the default values. The
object b initializes the constructor with no parameters. The object c initializes the constructor
with one argument, which provides the value to the first parameter of the constructor. Figure
below shows the output of the above program.

1-2

0-1

3-1

11.2 DYNAMIC INITIALIZATION OF OBJECTS :

Dynamic initialization of objects means initializing objects at run time. A constructor
helps initialize objects at run time when an object is created. For example, consider the Fruits

 PROGRAMMING WITH C & C++ 11.9 CONSTRUCTORS & OPERATORS

class, which has various constructors with different parameters. The constructors are initialized
at run time in the main function. Dynamic initialization of object refers to initializing the
objects at a run time i.e., the initial value of an object is provided during run time. It can be
achieved by using constructors and by passing parameters to the constructors. This comes in
really handy when there are multiple constructors of the same class with different inputs.

11.2.1 Dynamic Constructor :

The constructor used for allocating the memory at runtime is known as the dynamic
constructor. The memory is allocated at runtime using a new operator and similarly, memory
is deallocated at runtime using the delete operator.

11.2.2 Dynamic Allocation :

1. In the below example, new is used to dynamically initialize the variable

in default constructor and memory is allocated on the heap.

2. The objects of the class g calls the function and it displays the value of

dynamically allocated variable i.e ptr.

Below is the program for dynamic initialization of object using new operator :

// C++ program for dynamic allocation

#include <iostream>

using namespace std;

 class gs

{

 int* ptr;
 public:

 // Default constructor

 gs()

 {

 // Dynamically initializing ptr using new

 ptr = new int;

 *ptr = 10;

 }

 // Function to display the value of ptr

CENTRE FOR DISTANCE EDUCATION 11.10 ACHARYA NAGARJUNA UNIVERSITY

 void display()

 {

 cout << *ptr << endl;

 }

};

 // Driver Code

int main()

{

 gs obj1;

 // Function Call

 obj1.display();

 return 0;

}

Output : 10

11.2.3 Dynamic Deallocation :

In the below code, delete is used to dynamically free the memory.

The contents of obj1 are overwritten in the object obj2 using assignment operator, then
obj1 is deallocated by using delete operator.

Below is the code for dynamic deallocation of the memory using delete operator.

// C++ program to dynamically deallocating the memory

#include <iostream>

using namespace std;

class gs

{

 int* ptr;

 PROGRAMMING WITH C & C++ 11.11 CONSTRUCTORS & OPERATORS

public :

 // Default constructor

 gs()

 {

 ptr = new int;

 *ptr = 10;

 }

 // Function to display the value

 void display()

 {

 cout << "Value: " << *ptr

 << endl;

 }

};

 // Driver Code

int main()

{

 // Dynamically allocating memory

 // using new operator

 gs* obj1 = new gs();

 gs* obj2 = new gs();

 // Assigning obj1 to obj2

 obj2 = obj1;

 // Function Call

 obj1->display();

 obj2->display();

 // Dynamically deleting the memory

 // allocated to obj1

CENTRE FOR DISTANCE EDUCATION 11.12 ACHARYA NAGARJUNA UNIVERSITY

 delete obj1;

 return 0;

}

Output :
Value : 10

Value : 10

In the below program is demonstrating dynamic initialization of objects and calculating
bank deposit :

// C++ program to illustrate the dynamic initialization as memory is allocated to the object

#include <iostream>

using namespace std;

class bank

{

 int principal;

 int years;

 float interest;

 float returnvalue;

public:

 // Default constructor

 bank() {}

// Parameterized constructor to calculate
interest(float)

 bank(int p, int y, float i)

 {

 principal = p;

 years = y;

 interest = i/100;

 PROGRAMMING WITH C & C++ 11.13 CONSTRUCTORS & OPERATORS

 returnvalue = principal;

 cout << "\nDeposited amount (float):";

 // Finding the interest amount

 for (int i = 0; i < years; i++)

{

 returnvalue = returnvalue * (1 + interest);

 }

 }

 // Parameterized constructor to calculate interest(integer)

 bank(int p, int y, int i)

 {

 principal = p;

 years = y;

 interest = float(i)/100;

 returnvalue = principal;

 cout << "\nDeposited amount"

 << " (integer):";

 // Find the interest amount

 for (int i = 0; i < years; i++)

{

 returnvalue = returnvalue * (1 + interest);

 }

 }

 // Display function

 void display(void)

CENTRE FOR DISTANCE EDUCATION 11.14 ACHARYA NAGARJUNA UNIVERSITY

 {

 cout << returnvalue

 << endl;

 }

};

 // Driver Code

int main()

{

 // Variable initialization

 int p = 200;

 int y = 2;

 int I = 5;

 float i = 2.25;

 // Object is created with

 // float parameters

 bank b1(p, y, i);

 // Function Call with object of class

 b1.display();

 // Object is created with integer parameters

 bank b2(p, y, I);

 // Function Call with object of class

 b2.display();

 return 0;

}

Output :

Deposited amount (float):209.101

Deposited amount (integer):220.5

 PROGRAMMING WITH C & C++ 11.15 CONSTRUCTORS & OPERATORS

11.3 DESTRUCTORS :

Destructors are functions, which are invoked whenever an object of a class is destroyed.
Destructors in C++ also have the same name as the name of the class in which they are defined
except that they are preceded by a operator ~. The destructors are invoked when the object of a
class goes out of its defined scope. It is not necessary to declare a destructor inside a class. If a
destructor is not declared in a class then the compiler will automatically create a default destruct
in the class. If a destructor is declared as private, then the class cannot be instantiated. A
destructor defined in a class has the following properties :

 Destructors have the same name as class name except that they are preceded by the

operator ~.

 Destructors cannot have arguments.

 Destructors do not return values.

 Destruction of objects takes place when the object leaves its scope of definition or is

explicitly destroyed.

 Destructors also obey the usual access rules as other member functions.

 Destructors are not parameterized. They do not hold any arguments and

cannot be overloaded.

 Destructors cannot be declared const, volatile, const volatile or static.

 Destructors can be declared as virtual or pure virtual.

 You cannot access the address of a destructor.

Consider the following program that shows how to define a destructor in the example_destructor
class.

#include <iostream>

 using namespace std;

class destrexam

{

int a, b;

 public:

destrexam(int i, int j)

{ //constructor definition in a class

CENTRE FOR DISTANCE EDUCATION 11.16 ACHARYA NAGARJUNA UNIVERSITY

a=i;

 b=j:

}

~destrexam ()

{}

void show()

{

 cout << a << “ “ << b;

}

};

int main()

{

destexam obj (3, 4);

obj.show();

return 0;

}

In the above program, the destrexam class contains a destructor. The compiler in the program
invokes the destructor implicitly. The output of above code is 3 4

11.4 OPERATORS :

An operator is a symbol that tells the compiler to perform specific mathematical or logical
manipulations. C++ is rich in built-in operators and provides the following types of operators:

Arithmetic Operators

Relational Operators

Logical Operators

Bitwise Operators

Assignment Operators

Misc Operators

In this will examine the arithmetic, relational, logical, bitwise, assignment and other operators

one by one.

 PROGRAMMING WITH C & C++ 11.17 CONSTRUCTORS & OPERATORS

Arithmetic Operators :

There are following arithmetic operators supported by C++ language :

Assume variable A holds 10 and variable B holds 20, then :

 Operator Description Example

 + Adds two operands A + B will give 30

 - Subtracts second operand from the first A - B will give -10

 * Multiplies both operands A * B will give 200

 / Divides numerator by de-numerator B / A will give 2

 % Modulus Operator and remainder of after B % A will give 0
 an integer division

 ++ Increment operator, increases integer A++ will give 11
 value by one

 -- Decrement operator, decreases integer A-- will give 9
 value by one

Relational Operators :

There are following relational operators supported by C++ language Assume variable A holds
10 and variable B holds 20, then:

Operator Description Example

 == Checks if the values of two operands are equal
or not, if yes then condition becomes true.

 A == B is not true.

 != Checks if the values of two operands are A ! = B is true.
 equal or not, if values are not equal then
 condition becomes true.

 > Checks if the value of left operand is greater
 than the value of right operand, if yes then A > B is true.
 condition becomes true.

 < Checks if the value of left operand is less than A >= B is not true
 the value of right operand, if yes then
 condition becomes true.

CENTRE FOR DISTANCE EDUCATION 11.18 ACHARYA NAGARJUNA UNIVERSITY

 >= Checks if the value of left operand is greater than A < B is not true.
 or equal to the value of right operand, if yes then
 condition becomes true.

 <= Checks if the value of left operand is less than or A > B is not true
 equal to the value of right operand, if yes then

 condition becomes true.

Logical Operators :

There are following logical operators supported by C++ language Assume variable A holds 1

and variable B holds 0, then:

Operator Description Example

 && Called Logical AND operator. A&&B is false.

 || Called Logical OR Operator. If A | | B is true.

 any of the two operands is non-

 zero, then condition becomes true.

 ! Called Logical NOT Operator. A&&B is true.
 Use to reverses the logical state of
 its operand. If a condition is true,
 then Logical NOT operator will
 make false.

 Bitwise Operators :

 Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |,

 and ^ are as follows :

p q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

 PROGRAMMING WITH C & C++ 11.19 CONSTRUCTORS & OPERATORS

Assume if A = 60; and B = 13; now in binary format they will be as follows :

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by C++ language are listed in the following table. Assume

variable A holds 60 and variable B holds 13, then :

 Operator Description Example

 & Binary AND Operator copies a bit A & B will give 12 which is

 to the result if it exists in both operands. 0000 1100

 | Binary OR Operator copies a bit if it exists A | B will give 61 which is
 in either operand. 0011 1101

^ Binary XOR Operator copies the bit if it is A ^ B will give 49 which is

 set in one operand but not both. 0011 0001

~ Binary Ones Complement Operator is A will give -61 which is 1100
unary and has the effect of 'flipping' bits. 0011 in 2's complement form
 due to a signed binary number

 << Binary Left Shift Operator. The left A << 2 will give 240 which is
 operands value is moved left by the 1111 0000

 number of bits specified by the right
 operand.

>> Binary Right Shift Operator. The left A >> 2 will give 15 which is
 operands value is moved right by the 0000 1111
 number of bits specified by the right

 operand.

CENTRE FOR DISTANCE EDUCATION 11.20 ACHARYA NAGARJUNA UNIVERSITY

Assignment Operators :

There are following assignment operators supported by C++ language :

 Operator Description Example

 = Simple assignment operator, Assigns C = A + B will assign value of
 values from right side operands to left A + B into C
 side operand.

 += Add AND assignment operator, It adds C += A is equivalent to
 right operand to the left operand and C = C + A
 assign the result to left operand.

 -= Subtract AND assignment operator, It C -= A is equivalent to
 subtracts right operand from the left C = C – A
 operand and assign the result to left
 operand.

 *= Multiply AND assignment operator, It C *= A is equivalent to
 multiplies right operand with the left C = C * A
 operand and assign the result to left
 operand.

 /= Divide AND assignment operator, It C /= A is equivalent to
divides left operand with the right C = C / A

 operand and assign the result to left
 operand.

 %= Modulus AND assignment operator, It C %= A is equivalent to
 takes modulus using two operands and C = C % A
 assign the result to left operand.

 <<= Left shift AND assignment operator C <<= 2 is same as C = C << 2

 >>= Right shift AND assignment operator C >>= 2 is same as C = C >> 2

Bitwise AND assignment operator &= C &= 2 is same as C = C &
 2
 ^= Bitwise exclusive OR and assignment C ^= 2 is same as C = C ^ 2

operator

 |= Bitwise inclusive OR and assignment C |=2 is same as C = C | 2
 operator

 PROGRAMMING WITH C & C++ 11.21 CONSTRUCTORS & OPERATORS

Misc Operators :

There are few other operators supported by C++ Language.

Operator Description

sizeof sizeof operator returns the size of a variable. For
example, sizeofa, where a is integer, will return 4.

Condition ? X : Y Conditional operator. If Condition is true ? then it returns
 value X : otherwise value Y

 , Comma operator causes a sequence of operations to be
performed. The value of the entire comma expression is the
value of the last expression of the comma-separated list.

. dot and -> arrow Member operators are used to reference individual
 members of classes, structures, and unions.

Cast Casting operators convert one data type to another. For
example, int2.2000 would return 2.

 & Pointer operator & returns the address of a variable. For
example &a; will give actual address of the variable.

 * Pointer operator * is pointer to a variable. For example
*var; will pointer to a variable var.

Operators Precedence in C++ :

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator :

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluated first.

CENTRE FOR DISTANCE EDUCATION 11.22 ACHARYA NAGARJUNA UNIVERSITY

Category Operator Associativity

Postfix [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - type* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

11.5 SUMMARY :

In this chapter we have learned the special method that is automatically called when an
object of a class is created and the operator is a symbol that tells the compiler to perform
specific mathematical or logical manipulations.

11.6 KEY WORDS :

Constructors : In class-based, object-oriented programming, a constructor is a special type of
function called to create an object.

Parameterized constructors : Constructors are special function named after the class and
without a return type, and are used to construct objects.
Constructors, like function, can take input parameters.
Constructors are used to initialize objects.

 PROGRAMMING WITH C & C++ 11.23 CONSTRUCTORS & OPERATORS

Operators : In computer programming, operators are constructs defined within programming
languages which behave generally like functions, but which differ syntactically or
semantically.

11.7 SELF ASSESSMENT QUESTIONS :

1. What is a Constructor? Discuss the properties of constructors?

2. Explain the constructors with default arguments?

3. Write about the Operators?

4. Discuss the types of Operators?

11.8 FURTHER READINGS :

1. Schildt, H., The Complete Reference C++,. New Delhi: Tata McGraw-Hill, 2005.

2. Balaguruswamy, E., Object-oriented Programming in C++. New Delhi: Tata McGraw-

Hill, 2006.

LESSON – 12

INHERITANCE

AIMS AND OBJECTIVES:

The objectives of this lesson are to learn about

 the concept of inheritance

 how a class can be derived from the base class with desired properties /
characteristics

 how the visibility modes control the members of a base class that are inherited
into a derived class with the access – specifier(s) etc.

STRUCTURE OF THE LESSON:

12.1 Introduction to inheritance

12.1.1 Advantages and Disadvantages of Inheritance

12.1.2 Use of Access Specifier in Inheritance

12.1.3 Access Specifiers while Deriving a New Class

12.2 Types of inheritance

12.2.1 Single Inheritance

12.2.2 Multilevel inheritance

12.2.3 Multiple inheritance

12.3 Derived class declaration

12.3.1 Visibility Modes

12.4 Summary

12.5 Key Words

12.6 Self Assessment Questions

12.7 Further Readings

12.1 INTRODUCTION TO INHERITANCE :

The main feature of object-oriented programming is the reusability of code that can be
achieved through inheritance. You can reuse an existing class to create a new class without
modifying it. Inheritance is a process of creating new classes from the existing one. The
existing class is a vital component of inheritance. You can add new features to an existing

CENTRE FOR DISTANCE EDUCATION 12.2 ACHARYA NAGARJUNA UNIVERSITY

class when creating a new class called the derived class. The existing class is known as the
base class. The derived class can use all the data members and member functions of the base
class, if appropriate access specifiers, discussed later in the unit, are given. For instance, take
an example of an automobile class. The classes car, bus, truck and scooter are derived classes
of the automobile base class. All these classes share the properties and functions of the
automobile class

12.1.1 Advantages and Disadvantages of Inheritance :

In object – oriented programming languages, inheritance is used to extend the functionality
of abstract data types or classes. The advantages of inheritance are given below.

The most important advantage of inheritance is the reusability of code. The existing class
code remains the same and is used to create new derived classes.

Software development time is reduced because of the reusability of code. One base class can
be used by a number of derived classes.

The derived classes use the properties of the base class. So, the object of the derived class
becomes more powerful than that of the base class.

Following are the disadvantages of inheritance.

Inheritance is used to simplify a complicated project: sometimes inappropriate use of
inheritance makes a project more complicated. Calling the member functions of a base class
through derived class objects causes more compiler overheads.

Sometimes the memory is not properly used in the class hierarchy, as lot of data elements
remain unused.

12.1.2 Use of Access Specifier in Inheritance :

Three access specifiers, public, private and protected are used in C++. The keyword protected
is used in inheritance. The protected data members and functions behave like public
specifiers for derived classes and like private specifiers for other classes. The following
program shows the use of the keyword protected :

// program to use protected access specifier

#include<iostream.h>
#include<conio.h>
class emp

{
protected:

int empno;
char name[20];

} ;

PROGRAMMING WITH C & C++ 12.3 INHERITANCE

class emp_details : emp
{

Public:
void add_exp()

{
 cout<<"Enter Empno:";

 cin>>empno:
 cout<<"Enter name:";
 cin>>name;

}
void display()

{
cout<<"Empnos*<<empno;
cout<<"\nName="<<name;

 }
} ;

void main()
{

emp_detailsd;
clrscr();
d.add_emp();
d.display();
getch();

}
The above program shows that the class Emp is able to access data members of the

class emp details because they are declared using the protected keyword. If you change the
protected keyword with private, the program gives errors. The below figure shows output of
the above program.

Enter Empno:23

Enter name:Ajay

Empno=23

Name=Ajay

12.1.3 Access Specifiers while Deriving a New Class :

 A class can also be inherited in three ways from the base class, public, protected and
private. There are three ways in which the scope of the data members can be used in a
derived class. The following code shown the first way.

Class A
{

//members of class A
};

CENTRE FOR DISTANCE EDUCATION 12.4 ACHARYA NAGARJUNA UNIVERSITY

Class B : public A

{

// members of class B

};

The following code shows the second way.

 Class A

 {

 // members of class A

 };

 Class B : protected A

{

 // members of class B

};

The following code shows the third way.

 Class A

 {

 // members of class A

};

Class B; private A

{

// members of class B

};

12.2 TYPES OF INHERITANCE :

 Different types of inheritance are available in C++ based of the number of base
classes and nesting of derivations, such as single inheritance, multilevel inheritance, multiple
inheritance, hierarchical, hybrid and multipath inheritance.

12.2.1 Single Inheritance:

 When only one class is used to derive a new class, the inheritance between the base
class and the derived class is called single inheritance . In this case, the derived class is not
used as a base class.

PROGRAMMING WITH C & C++ 12.5 INHERITANCE

Figure below shows an example of single inheritance.

 Base class

Attributes Derived class

Class B

Data1
Data2
Data3
Data4

Function 1 ()
Function 2 ()

In the above figure, the B class uses the data members and member functions from the

base class, A in addition to its own data members, Data4 and function, Funciton2 ().

 The following program shows implementations of single inheritance.

 // program to use the protected data from base class

 #include<iostream.h>

 #include<conio.h>

 #include<sring.h>

 Class person

{

 Char name [20];

 Int age;

 Public:

 Void add _ person (char *n, int a)

 {

 Strcpy(name,n);

 Age=a;

 }

Class A
Data1
Data2
Data3

Function1 ()

CENTRE FOR DISTANCE EDUCATION 12.6 ACHARYA NAGARJUNA UNIVERSITY

 Void print_person ()

 {

 Cout<< “ Name is “<<name;

 Cout<<”\nAge is “<<age;

 }

 };

 Class employee:person

 {

 Int empno;

 Public :

 Void add_emp()

 {

 Char n [20];

 Int a;

 Cout<<”Enter empno:”;

 Cin>>empno;

 Cout<<”Enter name:”;

 Cin>>n;

 Cout<<”Enter age:”;

 Cin>>a;

 Add_person(n,a);

 }

 Void print_emp()

 {

 Cout<<”Empno is “<<empno<<end1;
 Print_person();
 };
 };
 Void main ()
 {
 Employee e;
 Clrscr ();
 e.add_emp ();

 e.print_emp ();
 getch();

 }

PROGRAMMING WITH C & C++ 12.7 INHERITANCE

The below figure shows output of the above program.

Enter empno:34

Enter name:Ajay

Enter age :22

Empno is 34

Name is Ajay

Age is 22

12.2.2 MULTILEVEL INHERITANCE :

In multilevel inheritance, you derive a class from a derived class. For example, a class
B is inherited from a class A, and a class C is inherited from the class B.
 Base class class A

 Derived class/ Base class class B

 Derived class class C

 Figure the Multilevel Inheritance

The class B acts as both, a derived class and a base class. It is a derived class for class
A and basw class for class C. The class C can access members of class B as well as class A.
The following program shows an example of multilevel inheritance.

// program to represent the multilevel inheritance

 #include<iostream.h>

 #include<conio.h>

 Class Auto

 {

 Protected:

 Float mileage;

 Int speed;

};

Class Fourwheelers: public Auto

{

Protected:

Char color [10];

};

CENTRE FOR DISTANCE EDUCATION 12.8 ACHARYA NAGARJUNA UNIVERSITY

Class car: public Fourwheelers

{

Protected:

Char carNo[10];

Char model[10];

Public:

Void input ()

{

cout<<”Enter the model of a Car “;

cin>>model; //Inherits the attribute of the scooter class

cout<<”Enter the color of a car”;

cin>>color; //inherits the attributes of the scooter class

cout<<”Enter the car number “;

cin>>carNo;

cout<<”Enter the mileage of a car “;

cin>>mileage; //inherits the attribute of the vehicle class

cout<<”enter the speed of a car “;

cin>>speed; //inherits the attributes of the vehicle class

}

Void display ()

{

cout<<end1;

cout<<”car details are :”<<end1;

cout<<”model : “<<model<<end1;

cout<<”color : “<<color<<end1;

cout<<”number : “<<carNo<<end1;

cout<<”mileage : “<<mileage<<” km p 1”<<end1;

cout<<”speed : “<<speed<<”km p h “<<end1;

}

 };

Void main()

{

Car obj;

Obj.input();

PROGRAMMING WITH C & C++ 12.9 INHERITANCE

Obj.display();

getch ();

}

In the above program, Auto is the top base class, form which a class Four wheelers has been
derived. The class Scooter has been derived from the Four wheelers class. In the main
function, the object of scooter class is able to access members from the Auto and Four
Wheelers Classes. The below figure shows output of the above program.

Enter the model of a Car: Civic
Enter the color of a Car: White
Enter the Car number: DL3C-6030
Enter the mileage of a Car: 12
Enter the speed of a Car: 200

Car Details are :
Model : Civic
Color : White
Number:DL3C-6030
Mileage:12 km p 1
Speed: 200 km p h

12.2.3 MULTIPLE INHERITACE :

The process where you derive one class from two or more base classes is called multiple
inheritance. The class derived this way inherits the properties of all base classes. For
example, a child inherits propertied from both his mother as well as his father. Figure below
shows multiple inheritance.

 Class A Class B Class C

 Class D

 The class D has been derived from class A, Class B and class C. Therefore, it can
access members of all the three base classes. The syntax to implement multiple inheritance is

Class derived: public Base1, Base2
 {
 // class Body
 }

For instance, consider the example of a seaplane that comes in different categories, an air
vehicle and a water vehicle. The following program shows how to implement multiple
inheritance.

CENTRE FOR DISTANCE EDUCATION 12.10 ACHARYA NAGARJUNA UNIVERSITY

 //program to inherit the properties of multiple base classes in a derived class

 #include<iostream.h>

 #include<conio.h>

 #include<stdlib.h>

 Class addition

 {

 protected:

 int add(int a, int b)

 {

 return(a+b);

 }

 };

 Class multiplication

 {

 protected:

 int mul(int a, intb)

 {

 return (a*b);

 }

 };

 Class number :addition, multiplication

 {

 Public:

 Void solve ();

 };

 Void number : : solve()

 {

 Int a,b,v,I;

 do

 {

cout<<”\n\n1\tAdd\n2\multiply\n3\tquit”;

cout<<”\nEnterur choice:”;

cin>>c;

switch (c)

PROGRAMMING WITH C & C++ 12.11 INHERITANCE

 {

 case 1:

 cout<<”Enter two numbers:”;

 cin>>a>>b;

 cout<<”Addition of “<<a<<” and

 “<<b<<” is “<<add(a,b);

 break;

 case 2;

 count<<”Enter two numbers:”;

 cin>>a>>b;

 cout<<”multiplication of “<<a<<”and

 “<<b<<” is “<<mul(a,b);

 break;

 case 3:

 exit(0);

 default:

 cout<<”Invalid choice”;

 break;

 }

 }while(c!=3);

 }

 Void main()

 {

 Number n;

 clrscr () ;

 n.solve();

 }

The above program shows that two base classes have been defined, One and Two. The class

Three has been derived from both base classes. The protected data members of both classes

have been accessed in derived class, Three.

The below figure shows output of the above program.

CENTRE FOR DISTANCE EDUCATION 12.12 ACHARYA NAGARJUNA UNIVERSITY

MAIN MENU

1 Add

2 Multiply

3 Quit

Enter ur choice: 1

Enter two numbers: 3

4

Addition of 3 and 4 is: 7

MAIN MENU

1 Add

2 Multiply

3 Quit

Enter ur choice: 2

Enter two numbers: 3

4

Multiplcation of 3 and 4 is : 12

MAIN MENU

1 Add

2 Multiply

3 Quit

Enter ur choice : 3

12.3 Derived class declaration :

The derived class extends its features by inheriting the properties of another class, called
base class and adding features of its own. The declaration of derived class specifies its
relationship with the base class in addition to its own features.

The syntax for declaring a derived class is :

class derived class:[visibility mode Or Access specifier] baseclass

{

//Derived class members (member functions and variables)

};

In the above syntax class is a keyword, derived class is name of the new class. “:” is used
as a separator between the derived class name and the access speciifier. The visibility

PROGRAMMING WITH C & C++ 12.13 INHERITANCE

mode tells the way in which the base class is inherited (private, protected or public).The
visibility mode is optional and the default mode is private. “base class” is the name of the
class from which the properties are being inherited.

e.g.: class student : private / public person

derived class name Access specifier base class

{
……… };

12.3.1 Visibility Modes : There are three types of visibility modes. They are :

i) Private
ii) Protected
iii) Public

These are used for specifying the way in which the properties of the base class are
inherited.

Private : If the access specifier “private”, is used to inherit the properties of base class,

then

i) The private data of the base class cannot be inherited but can be accessed through

the inherited member.

ii) The protected data of the base class is inherited as the private data. It cannot be

used in the main function. But, it can be accessed using the base class or the

derived class member function.

iii) The public data of the base class is inherited as private data in the derived class.

They are inaccessible to the objects of the derived class. It can be accessed by the

member functions of the derivedclass.

Eg.:
class base

{
private:

intx; readx();
protected:

inty; ready();
public:

intz; readz();
}

classder:privatebase

{
private:

CENTRE FOR DISTANCE EDUCATION 12.14 ACHARYA NAGARJUNA UNIVERSITY

 int w;
public:
void read();
void display():

};

In the above example, variable x cannot be inherited, but both y and z are inherited as
private variables in the derived class. They can be accessed through the functions read()
and display(). They cannot be used directly by the main().

Protected : When the access specifier “protected” is used to inherit base class properties,

 The private data of the base class cannot be inherited but can be accessed through the

inherited members.

 Protected member in the base class are inherited as protected data in the derived class.

 The public data in the base class is inherited as protected data of the derived class.

class base

{

private:

int x; readx();

protected:

int y; ready();

public:

int z; readz();

}

class der: protected base

{

private:

int w;

 public:

 void read();

 void display();

 };

In the above example, ‘x’ cannot be inherited. y and z are inherited as protected members
and thus can be used in read() and display() they can be further inherited but they can not be
accessed from the ,main

Public : If the access specifier “public” is used to inherit the properties of base class, then

 The private data of the base class cannot be inherited as member of derived class but

can be accessed through the inherited member functions.

PROGRAMMING WITH C & C++ 12.15 INHERITANCE

 The protected member of the base class is the member of the derived class.

 The public member of the base class is the public member in the derived class.

class base

{

private:

int x; readx();

protected:

int y; ready();

public:

 int z; readz();

}

class der: public base

{

private:

int w;

public:

 void read();

 void display();

};

In the above example ‘x’ cannot be inherited into the derived class, ‘y’ is inherited as a
protected member of the derived class and ‘z’ can be accessed from the main itself.

Visibility Of Inherited Members:

Base class
visibility

Derived class visibility
Public

derivation
Private

derivation
Protected
derivation

Private Not inherited Not inherited Not inherited
Protected Protected Private Protected
Public Public Private Protected

12.5 SUMMARY :

It explained to you the concept of inheritance .C++ allows you to inherit the data
members and member functions of the base class to reuse the members for performing
complex tasks in a program. Inheritance is of the following types. Then the visibility mode
(private, public or protected) in the definition of the derived class specifies whether the
features of the base class are privately derived, publicly derived or protected derived.

CENTRE FOR DISTANCE EDUCATION 12.16 ACHARYA NAGARJUNA UNIVERSITY

12.5 KEY WORDS :

Single Inheritance : The inheritance in which a derived class is inherited from the only one
base class.

Multiple Inheritances : Multiple Inheritance is a feature of C++ where a class can inherit
from more than one classes.

Multilevel Inheritance : In C++ programming, not only you can derive a class from the
base class but you can also derive a class from the derived class.

Hierarchical Inheritance : Hierarchical Inheritance in C++ refers to the type of inheritance
that has a hierarchical structure of classes.

Hybrid Inheritance : Hybrid Inheritance in C++ is the process by which a sub class
follows multiple types of inheritance while deriving properties
from the base or super class

Private : Members cannot be accessed (or viewed) from outside the class.

Protected : Members cannot be accessed from outside the class, however, they can be
accessed in inherited classes.

Public : Members are accessible from outside the class.

12.6 SELF ASSESSMENT QUESTIONS :

1. What is Inheritance

2. Write the Use of Access Specifier in Inheritance

3. Explain types of Inheritance

4. Types of visibility modes

5. Differences between Private, Protected & Public

12.7 FURTHER READINGS :

1. Schildt, H., The Complete Reference C++,. New Delhi: Tata McGraw-Hill, 2005.

2. Balaguruswamy, E., Object-oriented Programming in C++. New Delhi: Tata

McGraw-Hill, 2006

LESSON - 13

HIERARCHICAL INHERITANCE

AIMS AND OBJECTIVES :

The objectives of this lesson are to learn about

 what is the hierarchy of derived classes in CPP

 how the hierarchy of the derived class can be decided in CPP

 the implementation of hierarchy in CPP etc.

STRUCTURE OF THE LESSON :

13.1 Hierarchical inheritance

13.2 Multilevel Inheritance

13.3 Multiple inheritance

13.4 Hybrid Inheritance

13.5 Summary

13.6 Key Words

13.7 Self Assessment Questions

13.8 Further Readings

13.1 HIERARCHICAL INHERITANCE :

 In this type of inheritance, one or more derived classes can be created using one or
more base classes. Hierarchical inheritance shows top-down style through splitting a complex
class into many subclasses.

The below figure is an example of hierarchical inheritance.

 Class A class B class C

 Class D class E

 Class F

Hierarchical Inheritance

CENTRE FOR DISTANCE EDUCATION 13.2 ACHARYA NAGARJUNA UNIVERSITY

The classes A, B and C are the base classes and the class D derives from the base classes A
and B. The class E derives from the base classes. B and C. The class F derives from the base
classes, D and E. The figure illustrates the hierarchical relationship between classes. The
following program shows the hierarchical relationship between classes.

// hierarchial inheritance
#include <iostream>
using namespace std;

class A //single base class
 {
 public:
 int x, y;
 void getdata()
 {
 cout << "\nEnter value of x and y:\n"; cin >> x >> y;
 }
 };
class B : public A //B is derived from class base
 {
 public:
 void product()
 {
 cout << "\nProduct= " << x * y;
 }
 };
class C : public A //C is also derived from class base
 {
 public:
 void sum()
 {
 cout << "\nSum= " << x + y;
 }
 };
int main()
 {
 B obj1; //object of derived class B
 C obj2; //object of derived class C
 obj1.getdata();
 obj1.product();
 obj2.getdata();
 obj2.sum();
 return 0;
 } //end of program

PROGRAMMING WITH C & C++ 13.3 HIERARCHICAL INHERITANCE

Output :
Enter value of x and y :
2
3
Product= 6
Enter value of x and y :
2
3
Sum= 5

In the above example, there is only one base class A from which two class B and C are
derived.

Both derived class have their own members as well as base class members.

The product is calculated in the derived class B, whereas, the sum is calculated in the derived
class C but both use the values of x and y from the base class.

13.2 MULTILEVEL INHERITANCE :

In multilevel inheritance, you derive a class from a derived class. For example, a class
B is inherited from a class A, and a class C is inherited from the class B.

 Base class class A

 Derived class / Base class class B

 Derived class class C

Multilevel Inheritance

The class B acts as both, a derived class and a base class. It is a derived class for class
A and basw class for class C. The class C can access members of class B as well as class A.
The following program shows an example of multilevel inheritance.

// program to represent the multilevel inheritance

 #include<iostream.h>

 #include<conio.h>

 Class Auto
 {
 Protected:
 Float mileage;
 Int speed;

};

CENTRE FOR DISTANCE EDUCATION 13.4 ACHARYA NAGARJUNA UNIVERSITY

Class Fourwheelers: public Auto

{

Protected:

Char color [10];

};

Class car: public Fourwheelers

{

Protected:

Char carNo[10];

Char model[10];

Public:

Void input ()
{

cout<<”Enter the model of a Car “;

Cin>>model; //Inherits the attribute of the scooter class

cout<<”Enter the color of a car”;

cin>>color; //inherits the attributes of the scooter class

cout<<”Enter the car number “;

cin>>carNo;

cout<<”Enter the mileage of a car “;

cin>>mileage; //inherits the attribute of the vehicle class

cout<<”enter the speed of a car “;

cin>>speed; //inherits the attributes of the vehicle class

}

Void display ()
{

Cout<<end1;

Cout<<”car details are :”<<end1;

Cout<<”model : “<<model<<end1;

Cout<<”color : “<<color<<end1;

Cout<<”number : “<<carNo<<end1;

Cout<<”mileage : “<<mileage<<” km p 1”<<end1;

Cout<<”speed : “<<speed<<”km p h “<<end1;

}
};

PROGRAMMING WITH C & C++ 13.5 HIERARCHICAL INHERITANCE

Void main()

{

Car obj;

Obj.input();

Obj.display();

getch();

}

In the above program, Auto is the top base class, form which a class Four wheelers has been
derived. The class Scooter has been derived from the Four wheelers class. In the main
function, the object of scooter class is able to access members from the Auto and Four
Wheelers Classes. The below figure shows output of the above program.

Enter the model of a Car: Civic

Enter the color of a Car: White

Enter the Car number: DL3C-6030

Enter the mileage of a Car: 12

Enter the speed of a Car: 200

Car Details are :

Model : Civic

Color : White

Number:DL3C-6030

Mileage:12 km p 1

Speed: 200 km p h

13.3 MULTIPLE INHERITACE :

The process where you derive one class from two or more base classes is called multiple
inheritance. The class derived this way inherits the properties of all base classes. For
example, a child inherits propertied from both his mother as well as his father. The below
figure shows multiple inheritance.

 Class A Class B Class C

 Class D

CENTRE FOR DISTANCE EDUCATION 13.6 ACHARYA NAGARJUNA UNIVERSITY

The class D has been derived from class A, Class B and class C. Therefore, it can access
members of all the three base classes. The syntax to implement multiple inheritance is:

 Class derived: public Base1, Base2
 {
 // class Body
 }

For instance, consider the example of a seaplane that comes in different categories, an air
vehicle and a water vehicle. The following program shows how to implement multiple
inheritance.

 //program to inherit the properties of multiple base classes in a derived class

 #include<iostream.h>

 #include<conio.h>

 #include<stdlib.h>

 Class addition

 {

 protected:

 int add(int a, int b)

 {

 return(a+b);

 }

 };

 Class multiplication

 {

 Protected:

 int mul(int a, intb)

 {

 Return (a*b);

 }

 };

 Class number :addition, multiplication

 {

 Public:

 Void solve ();

PROGRAMMING WITH C & C++ 13.7 HIERARCHICAL INHERITANCE

 };

 Void number : : solve()
 {
 Int a,b,v,I;
 Do
 {
 Cout<<”\n\n1\tAdd\n2\multiply\n3\tquit”;

 Cout<<”\nEnterur choice:”;

 Cin>>c;

 Switch (c)
 {
 Case 1:

 Cout<<”Enter two numbers:”;

 Cin>>a>>b;

Cout<<”Addition of “<<a<<” and“<<b<<” is

“<<add(a,b);

 Break;

 Case 2;

 Count<<”Enter two numbers:”;

 Cin>>a>>b;

 Cout<<”multiplication of “<<a<<”and

 “<<b<<” is “<<mul(a,b);

 Break;

 Case 3:

 Exit(0);

 Default:

 Cout<<”Invalid choice”;

 Break;
 }
 }while(c!=3);

 }

 Void main()
 {
 Number n;
 clrscr() ;
 n.solve();
 }

CENTRE FOR DISTANCE EDUCATION 13.8 ACHARYA NAGARJUNA UNIVERSITY

The above program shows that two base classes have been defined, One and Two. The class

Three has been derived from both base classes. The protected data members of both classes

have been accessed in derived class,Three. Figure shows the output of the above program.

MAIN MENU

1 Add

2 Multiply

3 Quit

Enter ur choice: 1

Enter two numbers: 3

4

Addition of 3 and 4 is: 7

MAIN MENU

1 Add

2 Multiply

3 Quit

Enter ur choice: 2

Enter two numbers: 3

4

Multiplcation of 3 and 4 is : 12

MAIN MENU

1 Add

2 Multiply

3 Quit

Enter ur choice : 3

13.4 HYBRID INHERITANCE :

When you derive anew class from one or more types of inheritance, the process is called

hybrid inheritance. The below figure shows an example of hybrid inheritance.

 Class A Class B

 Class C

 Class D

Hybrid Inheritance

PROGRAMMING WITH C & C++ 13.9 HIERARCHICAL INHERITANCE

Here, class D is an example of hybrid inheritance because it has been derived from two

classes A and C. Class A is a simple class and class C is a derived class of class B. The

following program shows hybrid inheritance.

// hybrid inheritance
#include <iostream>
using namespace std;

class A
 {
 public:
 int x;
 };
class B : public A
 {
 public:
 B() //constructor to initialize x in base class A
 {
 x = 10;
 }
 };
class C
 {
 public:
 int y;
 C() //constructor to initialize y
 {
 y = 4;
 }
 };
class D : public B, public C //D is derived from class B and class C
 {
 public:
 void sum()
 {
 cout << "Sum= " << x + y;
 }
 };
int main()
 {
 D obj1; //object of derived class D
 obj1.sum();
 return 0;
 } //end of program

CENTRE FOR DISTANCE EDUCATION 13.10 ACHARYA NAGARJUNA UNIVERSITY

Output

Sum= 14

13.5 SUMMARY :

In this chapter we have learned the Inheritance concepts and also in hierarchical
inheritance, more than one derived class is created from a single base class.

13.6 KEY WORDS :

Inheritance : Inheritance is a feature or a process in which, new classes are created
from the existing classes.

Super class : The parent class whose properties are inherited by another class.

Sub class : The class that inherits properties from another class.

Hierarchical inheritance :

Hierarchical Inheritance in C++ refers to the type of inheritance that has a hierarchical
structure of classes. And also a single base class can have multiple derived classes, and
other subclasses can further inherit these derived classes, forming a hierarchy of classes.

13.7. SELF ASSESSMENT QUESTIONS :

1. Explain the types f inheritance?

2. Compare the hierarchical inheritance and multilevel inheritance?

3. Discuss the multiple inheritance?

4. Write about hybrid inheritance?

13.8. FURTHER READINGS :

1. Schildt, H., The Complete Reference C++,. New Delhi: Tata McGraw-Hill, 2005.

2. Balaguruswamy, E., Object-oriented Programming in C++. New Delhi: Tata

McGraw – Hill, 2006.

LAB MANUAL

310BCO21 – COURSE 3C : PROGRAMMING WITH C &

C++ Practical Component

1. Write C programs for

a. Fibonacci Series

b. Prime number

c. Palindrome number

d. Armstrong number.

2.’ C’ program for multiplication of two matrices

3.’C’ program to implement string functions

4.’ C’ program to swap numbers

5.’C’ program to calculate factorial using recursion

6.’C++’ program to perform addition of two complex numbers using constructor

7. Write a program to find the largest of two given numbers in two different classes using friend

 function

8. Program to add two matrices using dynamic constructor

9. Implement a class string containing the following functions:

 a) Overload + operator to carry out the concatenation of strings.

 b) Overload = =operator to carry out the comparison of strings.

10. Program to implement inheritance.

CENTRE FOR DISTANCE EDUCATION L - 2 ACHARYA NAGARJUNA UNIVERSITY

Programs Code :

1. Write C programs to execute the following

i) Fibonacci Series ii) Prime Number iii) Palindrome Number iv) Armstrong Number

i) FIBONACCI SERIES

Program :

#include <stdio.h>

int main()

{

 int i, n;

 // initialize first and second terms

 int t1 = 0, t2 = 1;

 // initialize the next term (3rd term)

 int nextTerm = t1 + t2;

 // get number of terms from user

 printf("Enter the number of terms: ");

 scanf("%d", &n);

 // print the first two terms t1 and t2

 printf("Fibonacci Series: %d, %d, ", t1, t2);

 // print 3rd to nth terms

 for (i = 3; i <= n; ++i)

 {

LAB PROGRAMMES L - 3 PRACTICAL MANUAL

 printf("%d, ", nextTerm);

 t1 = t2;

 t2 = nextTerm;

 nextTerm = t1 + t2;

 }

 return 0;

}

OUTPUT :

Enter the number of terms: 10

Fibonacci Series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

CENTRE FOR DISTANCE EDUCATION L - 4 ACHARYA NAGARJUNA UNIVERSITY

ii) PRIME NUMBER

Program :

#include <stdio.h>

int main()

{

 int n, i, flag = 0;

 printf("Enter a positive integer: ");

 scanf("%d", &n);

 // 0 and 1 are not prime numbers

 // change flag to 1 for non-prime number

 if (n == 0 || n == 1)

 flag = 1;

 for (i = 2; i <= n / 2; ++i)

 {

 // if n is divisible by i, then n is not prime

 // change flag to 1 for non-prime number

 if (n % i == 0)

 {

 flag = 1;

 break;

 }

 }

 // flag is 0 for prime numbers

LAB PROGRAMMES L - 5 PRACTICAL MANUAL

 if (flag == 0)

 printf("%d is a prime number.", n);

 else

 printf("%d is not a prime number.", n);

 return 0;

}

OUTPUT :

Enter a positive integer : 17

17 is a prime number

CENTRE FOR DISTANCE EDUCATION L - 6 ACHARYA NAGARJUNA UNIVERSITY

iii) PALINDROME NUMBER

Program :

#include<stdio.h>

int main()

{

 int n,r,sum=0,temp;

 printf("enter the number=");

 scanf("%d",&n);

 temp=n;

 while(n>0)

 {

 r=n%10;

 sum=(sum*10)+r;

 n=n/10;

 }

 if(temp==sum)

 printf("palindrome number ");

 else

 printf("not a palindrome number");

 return 0;

}

OUTPUT :

Enter the number=1001

palindrome number

LAB PROGRAMMES L - 7 PRACTICAL MANUAL

iv) ARMSTRONG NUMBER

Program :

#include <stdio.h>

int main()

{

 int num, originalNum, remainder, result = 0;

 printf("Enter a three digit integer: ");

 scanf("%d", &num);

 originalNum = num;

 while (originalNum != 0)

 {

 // remainder contains the last digit

 remainder = originalNum % 10;

 result += remainder * remainder * remainder;

 // removing last digit from the orignal number

 originalNum /= 10;

 }

 if (result == num)

 printf("%d is an Armstrong number.", num);

 else

 printf("%d is not an Armstrong number.", num);

 return 0;

}

CENTRE FOR DISTANCE EDUCATION L - 8 ACHARYA NAGARJUNA UNIVERSITY

OUTPUT :

Enter a three-digit integer : 153

153 is an Armstrong number.

Enter a three-digit integer : 123

123 is not an Armstrong number.

LAB PROGRAMMES L - 9 PRACTICAL MANUAL

2. Write a C program to execute multiplication of two matrices

Program :

#include<stdio.h>

#include<conio.h>

int main()

{

 int mat1[3][3], mat2[3][3], mat3[3][3], sum=0, i, j, k;

 printf("Enter first 2*2 matrix element: ");

 for(i=0; i<2; i++)

 {

 for(j=0; j<2; j++)

 scanf("%d", &mat1[i][j]);

 }

 printf("Enter second 2*2 matrix element: ");

 for(i=0; i<2; i++)

 {

 for(j=0; j<2; j++)

 scanf("%d", &mat2[i][j]);

 }

 printf("\nMultiplying two matrices...");

 for(i=0; i<2; i++)

 {

 for(j=0; j<2; j++)

 {

 sum=0;

 for(k=0; k<2; k++)

 sum = sum + mat1[i][k] * mat2[k][j];

 mat3[i][j] = sum;

 }

 }

 printf("\nMultiplication result of the two given Matrix is: \n");

CENTRE FOR DISTANCE EDUCATION L - 10 ACHARYA NAGARJUNA UNIVERSITY

 for(i=0; i<2; i++)

 {

 for(j=0; j<2; j++)

 printf("%d\t", mat3[i][j]);

 printf("\n");

 }

 getch();

 return 0;

}

OUTPUT :

Enter first 2*2 matrix element: 1

2

3

4

Enter second 2*2 matrix element: 1

2

3

4

Multiplying two matrices...

Multiplication result of the two given Matrix is:

7 10

15 22

LAB PROGRAMMES L - 11 PRACTICAL MANUAL

3. Write a C program to implement string functions

Program :

#include<stdio.h>

#include<string.h>

int main()

{

 char a[10],b[10];

 int ch,len;

 printf("enter str1 ");

 scanf("%s",a);

 printf("enter str2 ");

 scanf("%s",b);

 while(1)

 {

 printf("\n choose ur option");

 printf("\n 1.length\n 2.compare\n 3.copy\n 4.concat\n");

 printf("enter ur choice: ");

 scanf("%d",&ch);

 switch(ch)

 {

 case 1: len=strlen(a);

CENTRE FOR DISTANCE EDUCATION L - 12 ACHARYA NAGARJUNA UNIVERSITY

 printf("length is %d\n",len);

 break;

 case 2:if(strcmp(a,b)==0)

 {

 printf("both strings are equal\n");

 }

 else

 if(strcmp(a,b)>0)

 printf("%s is greater than %s\n",a,b);

 else

 printf("%s is greater than %s\n",b,a);

 break;

 case 3: printf(" str1 %s\n",a);

 printf("str2 %s\n",b);

 strcpy(a,b);

 printf("after copy strings are\n");

 printf(" str1 %s\n",a);

 printf("str2 %s\n",b);

 break;

 case 4:printf(" str1 %s\n",a);

 printf("str2 %s\n",b);

LAB PROGRAMMES L - 13 PRACTICAL MANUAL

 strcat(a,b);

 printf(" str1 %s\n",a);

 break;

 default:

 return 0;

 }

 }

return 0;

}

OUTPUT :

enter str1 hello

enter str2 hai

 choose ur option

 1.length

 2.compare

 3.copy

 4.concat

enter ur choice: 1

length is 5

 choose ur option

 1.length

 2.compare

CENTRE FOR DISTANCE EDUCATION L - 14 ACHARYA NAGARJUNA UNIVERSITY

 3.copy

 4.concat

enter ur choice: 2

hello is greater than hai

 choose ur option

 1.length

 2.compare

 3.copy

 4.concat

enter ur choice: 3

 str1 hello

str2 hai

after copy strings are

 str1 hai

str2 hai

 choose ur option

 1.length

 2.compare

 3.copy

 4.concat

enter ur choice: 4

 str1 hai

str2 hai

 str1 haihai

LAB PROGRAMMES L - 15 PRACTICAL MANUAL

 choose ur option

 1.length

 2.compare

 3.copy

 4.concat

enter ur choice: 5

CENTRE FOR DISTANCE EDUCATION L - 16 ACHARYA NAGARJUNA UNIVERSITY

4. Write a C program to swap two numbers

Program :

// C program to swap two variables

#include <stdio.h>

int main()

{

 int x, y;

 printf("Enter Value of x ");

 scanf("%d", &x);

 printf("\nEnter Value of y ");

 scanf("%d", &y);

 int temp = x;

 x = y;

 y = temp;

 printf("\nAfter Swapping: x = %d, y = %d", x, y);

 return 0;

}

OUTPUT :

Enter Value of x 6

Enter Value of y 12

After Swapping: x = 12, y = 6

LAB PROGRAMMES L - 17 PRACTICAL MANUAL

5. Write a C program to calculate factorial using recursion

Program :

#include<stdio.h>

long int multiplyNumbers(int n);

int main()

{

 int n;

 printf("Enter a positive integer number: ");

 scanf("%d",&n);

 printf("Factorial of %d = %ld", n, multiplyNumbers(n));

 return 0;

}

long int multiplyNumbers(int n)

 {

 if (n>=1)

 return n*multiplyNumbers(n-1);

 else

 return 1;

}

OUTPUT :

Enter a positive integer: 6

Factorial of 6 = 720

CENTRE FOR DISTANCE EDUCATION L - 18 ACHARYA NAGARJUNA UNIVERSITY

6. Write a C++ program to perform addition of two complex numbers using constructor

Program :

#include<bits/stdc++.h>

using namespace std;

// User Defined Complex class

class Complex

{

 // Declaring variables public: int real, imaginary;

 // Constructor to accept real and imaginary part

 Complex(int tempReal = 0, int tempImaginary = 0)

 {

 real = tempReal;

 imaginary = tempImaginary;

 }

 // Defining addComp() method

 // for adding two complex number

 Complex addComp(Complex C1, Complex C2)

 {

// Creating temporary variable

 Complex temp;

 // Adding real part of complex numbers

LAB PROGRAMMES L - 19 PRACTICAL MANUAL

 temp.real = C1.real + C2.real;

 // Adding Imaginary part of

 // complex numbers

 temp.imaginary = (C1.imaginary + C2.imaginary);

 // Returning the sum

 return temp;

 }

};

// Driver code

int main()

{

 // First Complex number

 Complex C1(3, 2);

 // printing first complex number

 cout << "Complex number 1 : " <<

 C1.real << " + i" <<

 C1.imaginary << endl;

 // Second Complex number

 Complex C2(9, 5);

 // Printing second complex number

 cout << "Complex number 2 : " <<

CENTRE FOR DISTANCE EDUCATION L - 20 ACHARYA NAGARJUNA UNIVERSITY

 C2.real << " + i" <<

 C2.imaginary << endl;

 // For Storing the sum

 Complex C3;

 // Calling addComp() method

 C3 = C3.addComp(C1, C2);

 // Printing the sum

 cout << "Sum of complex number : " <<

 C3.real << " + i" <<

 C3.imaginary;

}

OUTPUT :

Complex number 1 : 3 + i2

Complex number 2 : 9 + i5

Sum of complex number : 12 + i7

LAB PROGRAMMES L - 21 PRACTICAL MANUAL

7. Write a program to find the largest of two given numbers in two different classes using

friend function

Program :

#include<iostream>

using namespace std;

class Test

{

 private:

 int x, y;

 public:

 void input()

 {

 cout << "Enter two numbers:";

 cin >> x>>y;

 }

 friend void find(Test t);

};

void find(Test t)

{

 if (t.x > t.y)

 {

CENTRE FOR DISTANCE EDUCATION L - 22 ACHARYA NAGARJUNA UNIVERSITY

 cout << "Largest is:" << t.x;

 }

 else

 {

 cout << "Largest is:" << t.y;

 }

}

int main()

{

 Test t;

 t.input();

 find(t);

 return 0;

}

OUTPUT :

Enter two numbers:20 30

Largest is:30

LAB PROGRAMMES L - 23 PRACTICAL MANUAL

8. Program to add two matrices using dynamic constructor

Program :

#include<iostream>

using namespace std;

class Dc

{

 int num1;

 int num2;

 int *ptr;

 public:

 // default constructor (here, it is dynamic constructor also)

 Dc()

 {

 num1 = 0;

 num2 = 0;

 ptr = new int;

 }

 //dynamic constructor with parameters

 Dc(int x, int y, int z)

 {

 num1 = x;

CENTRE FOR DISTANCE EDUCATION L - 24 ACHARYA NAGARJUNA UNIVERSITY

 num2 = y;

 ptr = new int;

 *ptr = z;

 }

 void display()

 {

 cout << num1 << " " << num2 << " " << *ptr;

 }

};

int main()

{

 Dc obj1;

 Dc obj2(3, 5, 11);

 obj1.display();

 cout << endl;

 obj2.display();

}

OUTPUT :

0 0 0

3 5 11

LAB PROGRAMMES L - 25 PRACTICAL MANUAL

9. Implement a class string containing the following functions:

a . Overload + operator to carry out the concatenation of strings.

b. Overload = =operator to carry out the comparison of strings.

Program :

#include<iostream>

#include<string.h>

using namespace std;

class String

{

 public:

 char str[20];

 public:

 void accept_string()

 {

 cout<<"\n Enter String : ";

 cin>>str;

 }

 void display_string()

 {

 cout<<str;

 }

CENTRE FOR DISTANCE EDUCATION L - 26 ACHARYA NAGARJUNA UNIVERSITY

 String operator+(String x) //Concatenating String

 {

 String s;

 strcat(str,x.str);

 strcpy(s.str,str);

 return s;

 }

};

int main()

{

 String str1, str2, str3;

 str1.accept_string();

 str2.accept_string();

 cout<<"\n --";

 cout<<"\n\n First String is : ";

 str1.display_string(); //Displaying First String

 cout<<"\n\n Second String is : ";

 str2.display_string(); //Displaying Second String

 cout<<"\n --";

 str3=str1+str2; //String is concatenated. Overloaded '+' operator

 cout<<"\n\n Concatenated String is : ";

 str3.display_string();

 return 0;

}

LAB PROGRAMMES L - 27 PRACTICAL MANUAL

OUTPUT :

Enter String : computer

Enter String : science

--

First String is : computer

Second String is : science

--

Concatenated String is : computerscience

b. Overload = =operator to carry out the comparison of strings.

Program :

#include<iostream>

#include<stdio.h>

#include<string.h>

using namespace std;

class String

{

 char str[20];

 public:

 void getdata()

 {

 gets(str);

 }

CENTRE FOR DISTANCE EDUCATION L - 28 ACHARYA NAGARJUNA UNIVERSITY

 int operator ==(String s)

 {

 if(!strcmp(str,s.str))

 return 1;

 return 0;

 }

};

int main()

{

 String s1,s2;

 cout<<"Enter first string :: ";

 s1.getdata();

 cout<<"\nEnter second string :: ";

 s2.getdata();

 if(s1==s2)

 {

 cout<<"\nStrigs are Equal\n";

 }

 else

 {

 cout<<"\nStrings are Not Equal\n";

 }

 return 0;

}

LAB PROGRAMMES L - 29 PRACTICAL MANUAL

OUTPUT :

Enter first string :: hello

Enter second string :: hello

Strigs are Equal

Enter first string :: hello

Enter second string :: hai

Strigs are not Equal

CENTRE FOR DISTANCE EDUCATION L - 30 ACHARYA NAGARJUNA UNIVERSITY

10. Write a C++ Program to demonstrate implementation of inheritance.

Program :

 #include <bits/stdc++.h>

using namespace std;

 // Base class

class Parent

{

 public:

 int id_p;

};

 // Sub class inheriting from Base Class(Parent)

class Child : public Parent

{

 public:

 int id_c;

};

 // main function

int main()

{

 Child obj1;

 // An object of class child has all data members and member functions of class parent

 obj1.id_p = 91;

 obj1.id_c = 17;

 cout << "Parent id is: " << obj1.id_p << '\n';

 cout << "Child id is: " << obj1.id_c << '\n';

 return 0;

}

OUTPUT :

Parent id is: 91

Child id is: 17

